TY - JOUR
T1 - Effect of glycemic index and carbohydrate intake on kidney function in healthy adults
AU - Juraschek, Stephen P.
AU - Chang, Alex R.
AU - Appel, Lawrence J.
AU - Anderson, Cheryl A.M.
AU - Crews, Deidra C.
AU - Thomas, Letitia
AU - Charleston, Jeanne
AU - Miller, Edgar R.
N1 - Funding Information:
Funding for this study was provided through grants HL084568 and HL084568 from the National Institutes of Health. SPJ is supported by a NIH/NIDDK T32DK007732-20 Renal Disease Epidemiology Training Grant. ERM was supported by NIH/NHLBI R01HL095448-04.
Publisher Copyright:
© 2016 The Author(s).
PY - 2016
Y1 - 2016
N2 - Background: Replacing carbohydrate with protein acutely increases glomerular filtration rate (GFR) but is associated with faster, long-term kidney disease progression. The effects of carbohydrate type (i.e. glycemic index, GI) on kidney function are unknown. Methods: We conducted an ancillary study of a randomized, crossover feeding trial in overweight/obese adults without diabetes or kidney disease (N = 163). Participants were fed each of four healthy, DASH-like diets for 5 weeks, separated by 2-week washout periods. Weight was kept constant. The four diets were: high GI (GI ≥65) with high %carb (58 % kcal) (reference diet), low GI (≤45) with low %carb (40 % kcal), low GI with high %carb; and high GI with low %carb. Plasma was collected at baseline and after each feeding period. Study outcomes were cystatin C, β2-microglobulin (β2M), and estimated GFR based on cystatin C (eGFRcys). Results: Mean (SD) age was 52 (11) years; 52 % were women; 50 % were black. At baseline, mean (SD) cystatin C, β2M, and eGFRcys were 0.8 (0.1) mg/L, 1.9 (0.4) mg/L, and 104 (16) mL/min/1.73 m2. Compared to the high GI/high %carb diet, reducing GI, %carb, or both increased eGFRcys by 1.9 mL/min/1.73 m2 (95 % CI: 1.1, 2.7; P < 0.001), 3.0 mL/min/1.73 m2 (1.9, 4.0; P < 0.001), and 4.5 mL/min/1.73 m2 (3.5, 5.4; P < 0.001), respectively. Increases in eGFRcys from reducing GI were significantly associated with increases in eGFRcys from reducing %carb (P < 0.001). Results for cystatin C and β2M reflected eGFRcys. Conclusions: Reducing GI increased GFR. Reducing %carb by increasing calories from protein and fat, also increased GFR. Future studies on GI should examine the long-term effects of this increase in GFR on kidney injury markers and clinical outcomes. Trial registration: Clinical Trials.gov,
AB - Background: Replacing carbohydrate with protein acutely increases glomerular filtration rate (GFR) but is associated with faster, long-term kidney disease progression. The effects of carbohydrate type (i.e. glycemic index, GI) on kidney function are unknown. Methods: We conducted an ancillary study of a randomized, crossover feeding trial in overweight/obese adults without diabetes or kidney disease (N = 163). Participants were fed each of four healthy, DASH-like diets for 5 weeks, separated by 2-week washout periods. Weight was kept constant. The four diets were: high GI (GI ≥65) with high %carb (58 % kcal) (reference diet), low GI (≤45) with low %carb (40 % kcal), low GI with high %carb; and high GI with low %carb. Plasma was collected at baseline and after each feeding period. Study outcomes were cystatin C, β2-microglobulin (β2M), and estimated GFR based on cystatin C (eGFRcys). Results: Mean (SD) age was 52 (11) years; 52 % were women; 50 % were black. At baseline, mean (SD) cystatin C, β2M, and eGFRcys were 0.8 (0.1) mg/L, 1.9 (0.4) mg/L, and 104 (16) mL/min/1.73 m2. Compared to the high GI/high %carb diet, reducing GI, %carb, or both increased eGFRcys by 1.9 mL/min/1.73 m2 (95 % CI: 1.1, 2.7; P < 0.001), 3.0 mL/min/1.73 m2 (1.9, 4.0; P < 0.001), and 4.5 mL/min/1.73 m2 (3.5, 5.4; P < 0.001), respectively. Increases in eGFRcys from reducing GI were significantly associated with increases in eGFRcys from reducing %carb (P < 0.001). Results for cystatin C and β2M reflected eGFRcys. Conclusions: Reducing GI increased GFR. Reducing %carb by increasing calories from protein and fat, also increased GFR. Future studies on GI should examine the long-term effects of this increase in GFR on kidney injury markers and clinical outcomes. Trial registration: Clinical Trials.gov,
KW - Carbohydrate
KW - Clinical trial
KW - Creatinine
KW - Cystatin C
KW - Diet
KW - Estimated glomerular filtration rate
KW - Glycemic index
KW - β2-microglobulin
UR - http://www.scopus.com/inward/record.url?scp=84992018176&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84992018176&partnerID=8YFLogxK
U2 - 10.1186/s12882-016-0288-5
DO - 10.1186/s12882-016-0288-5
M3 - Article
C2 - 27391484
AN - SCOPUS:84992018176
SN - 1471-2369
VL - 17
SP - 1
EP - 10
JO - BMC nephrology
JF - BMC nephrology
IS - 1
M1 - 70
ER -