Early developmental exposure to general anesthetic agents in primary neuron culture disrupts synapse formation via actions on the mTOR pathway

Jing Xu, R. Paige Mathena, Michael Xu, Yuchia Wang, Chejui Chang, Yiwen Fang, Pengbo Zhang, C. David Mintz

Research output: Contribution to journalArticlepeer-review

12 Scopus citations

Abstract

Human epidemiologic studies and laboratory investigations in animal models suggest that exposure to general anesthetic agents (GAs) have harmful effects on brain development. The mechanism underlying this putative iatrogenic condition is not clear and there are currently no accepted strategies for prophylaxis or treatment. Recent evidence suggests that anesthetics might cause persistent deficits in synaptogenesis by disrupting key events in neurodevelopment. Using an in vitro model consisting of dissociated primary cultured mouse neurons, we demonstrate abnormal pre-and post-synaptic marker expression after a clinically-relevant isoflurane anesthesia exposure is conducted during neuron development. We find that pharmacologic inhibition of the mechanistic target of rapamycin (mTOR) pathway can reverse the observed changes. Isoflurane exposure increases expression of phospho-S6, a marker of mTOR pathway activity, in a concentration-dependent fashion and this effect occurs throughout neuronal development. The mTOR 1 complex (mTORC1) and the mTOR 2 complex (mTORC2) branches of the pathway are both activated by isoflurane exposure and this is reversible with branch-specific inhibitors. Upregulation of mTOR is also seen with sevoflurane and propofol exposure, suggesting that this mechanism of developmental anesthetic neurotoxicity may occur with all the commonly used GAs in pediatric practice. We conclude that GAs disrupt the development of neurons during development by activating a well-defined neurodevelopmental disease pathway and that this phenotype can be reversed by pharmacologic inhibition.

Original languageEnglish (US)
Article number2183
JournalInternational journal of molecular sciences
Volume19
Issue number8
DOIs
StatePublished - Aug 2018

Keywords

  • Anesthesia
  • Neurodevelopment
  • Neurotoxicity
  • Synapse
  • mTOR

ASJC Scopus subject areas

  • Catalysis
  • Molecular Biology
  • Spectroscopy
  • Computer Science Applications
  • Physical and Theoretical Chemistry
  • Organic Chemistry
  • Inorganic Chemistry

Fingerprint

Dive into the research topics of 'Early developmental exposure to general anesthetic agents in primary neuron culture disrupts synapse formation via actions on the mTOR pathway'. Together they form a unique fingerprint.

Cite this