Early Detection of Ovarian Cancer Using Cell-Free DNA Fragmentomes and Protein Biomarkers

Jamie E. Medina, Akshaya V. Annapragada, Pien Lof, Sarah Short, Adrianna L. Bartolomucci, Dimitrios Mathios, Shashikant Koul, Noushin Niknafs, Michaël Noë, Zachariah H. Foda, Daniel C. Bruhm, Carolyn Hruban, Nicholas A. Vulpescu, Euihye Jung, Renu Dua, Jenna V. Canzoniero, Stephen Cristiano, Vilmos Adleff, Heather Symecko, Daan van den BroekLori J. Sokoll, Stephen B. Baylin, Michael F. Press, Dennis J. Slamon, Gottfried E. Konecny, Christina Therkildsen, Beatriz Carvalho, Gerrit A. Meijer, Claus Lindbjerg Andersen, Susan M. Domchek, Ronny Drapkin, Robert B. Scharpf, Jillian Phallen, Christine A.R. Lok, Victor E. Velculescu

Research output: Contribution to journalArticlepeer-review

Abstract

Ovarian cancer is a leading cause of death for women worldwide, in part due to ineffective screening methods. In this study, we used whole-genome cell-free DNA (cfDNA) fragmentome and protein biomarker [cancer antigen 125 (CA-125) and human epididymis protein 4 (HE4)] analyses to evaluate 591 women with ovarian cancer, with benign adnexal masses, or without ovarian lesions. Using a machine learning model with the combined features, we detected ovarian cancer with specificity >99% and sensitivities of 72%, 69%, 87%, and 100% for stages I to IV, respectively. At the same specificity, CA-125 alone detected 34%, 62%, 63%, and 100%, and HE4 alone detected 28%, 27%, 67%, and 100% of ovarian cancers for stages I to IV, respectively. Our approach differentiated benign masses from ovarian cancers with high accuracy (AUC = 0.88, 95% confidence interval, 0.83–0.92). These results were validated in an independent population. These findings show that integrated cfDNA fragmentome and protein analyses detect ovarian cancers with high performance, enabling a new accessible approach for noninvasive ovarian cancer screening and diagnostic evaluation. Significance: There is an unmet need for effective ovarian cancer screening and diagnostic approaches that enable earlier-stage cancer detection and increased overall survival. We have developed a high-performing accessible approach that evaluates cfDNA fragmentomes and protein biomarkers to detect ovarian cancer.

Original languageEnglish (US)
Pages (from-to)105-118
Number of pages14
JournalCancer discovery
Volume15
Issue number1
DOIs
StatePublished - Jan 1 2025

ASJC Scopus subject areas

  • Oncology

Fingerprint

Dive into the research topics of 'Early Detection of Ovarian Cancer Using Cell-Free DNA Fragmentomes and Protein Biomarkers'. Together they form a unique fingerprint.

Cite this