Abstract
Astronaut performance of locomotion and falls in a partial gravity environment similar to Mars (3/8 G) was simulated. An astronaut loping in Mars gravity while wearing a space suit was modeled. Preliminary calculating of factor of risk indicate that both locomotion and falls have a significant fracture risk level following long-term space flight if bone loss occurs at the rates currently observed in space flight studies (1-2% bone mineral density loss per month). This applies to astronauts performing activities on Mars following a 6-12 month journey in weightlessness, and to astronauts performing activities on Earth following 6 months or more of weightlessness. Given the significant level of fracture risk associated with both traumatic activities (falls) and activities of daily living (locomotion) for astronauts, there exists a serious need for countermeasures to bone loss associated with weightlessness.
Original language | English (US) |
---|---|
Pages (from-to) | S-101 |
Journal | Annals of biomedical engineering |
Volume | 28 |
Issue number | SUPPL. 1 |
State | Published - 2000 |
Externally published | Yes |
Event | 2000 Annual Fall Meeting of the Biomedical Engineering Society - Washington, WA, USA Duration: Oct 12 2000 → Oct 14 2000 |
ASJC Scopus subject areas
- Biomedical Engineering