TY - JOUR
T1 - Dynamic Functional Network Connectivity In Schizophrenia With MEG And fMRI, Do Different Time Scales Tell A Different Story?
AU - Sanfratello, Lori
AU - Houck, Jon
AU - Calhoun, Vince
N1 - Publisher Copyright:
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2018/10/1
Y1 - 2018/10/1
N2 - The importance of how brain networks function together to create brain states has become increasingly recognized. Therefore, an investigation of eyes-open resting state dynamic functional network connectivity (dFNC) of healthy controls (HC) versus that of schizophrenia patients (SP) via both fMRI and a novel MEG pipeline was completed. The fMRI analysis used a spatial independent component analysis (ICA) to determine the networks on which the dFNC was based. The MEG analysis utilized a source-space activity estimate (MNE/dSPM) whose result was the input to a spatial ICA, on which the networks of the MEG dFNC was based. We found that dFNC measures reveal significant differences between HC and SP, which depended upon the imaging modality. Consistent with previous findings, a dFNC analysis predicated on fMRI data revealed HC and SP remain in different overall brain states (defined by a k-means clustering of network correlations) for significantly different periods of time, with SP spending less time in a highly-connected state. The MEG dFNC, in contrast, revealed group differences in more global statistics: SP changed between meta-states (k-means cluster states that are allowed to overlap in time) significantly more often and to states which were more different, relative to HC. MEG dFNC also revealed a highly connected state where a significant difference was observed in inter-individual variability, with greater variability among SP. Overall, our results show that fMRI and MEG reveal between-group functional connectivity differences in distinct ways, highlighting the utility of using each of the modalities individually, or potentially a combination of modalities, to better inform our understanding of disorders such as schizophrenia.
AB - The importance of how brain networks function together to create brain states has become increasingly recognized. Therefore, an investigation of eyes-open resting state dynamic functional network connectivity (dFNC) of healthy controls (HC) versus that of schizophrenia patients (SP) via both fMRI and a novel MEG pipeline was completed. The fMRI analysis used a spatial independent component analysis (ICA) to determine the networks on which the dFNC was based. The MEG analysis utilized a source-space activity estimate (MNE/dSPM) whose result was the input to a spatial ICA, on which the networks of the MEG dFNC was based. We found that dFNC measures reveal significant differences between HC and SP, which depended upon the imaging modality. Consistent with previous findings, a dFNC analysis predicated on fMRI data revealed HC and SP remain in different overall brain states (defined by a k-means clustering of network correlations) for significantly different periods of time, with SP spending less time in a highly-connected state. The MEG dFNC, in contrast, revealed group differences in more global statistics: SP changed between meta-states (k-means cluster states that are allowed to overlap in time) significantly more often and to states which were more different, relative to HC. MEG dFNC also revealed a highly connected state where a significant difference was observed in inter-individual variability, with greater variability among SP. Overall, our results show that fMRI and MEG reveal between-group functional connectivity differences in distinct ways, highlighting the utility of using each of the modalities individually, or potentially a combination of modalities, to better inform our understanding of disorders such as schizophrenia.
UR - http://www.scopus.com/inward/record.url?scp=85095631122&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85095631122&partnerID=8YFLogxK
U2 - 10.1101/432385
DO - 10.1101/432385
M3 - Article
AN - SCOPUS:85095631122
SN - 0309-1708
JO - Unknown Journal
JF - Unknown Journal
ER -