Dosimetry of a sonolucent material for an ultrasound-compatible gynecologic high-dose-rate brachytherapy cylinder using Monte Carlo simulation and radiochromic film

Devin J. Van Elburg, Michael Roumeliotis, Hali Morrison, Jessica R. Rodgers, Aaron Fenster, Tyler Meyer

Research output: Contribution to journalArticlepeer-review

Abstract

Purpose: he purpose of this study was to study the dosimetric characterization of sonolucent material “TPX” to be used toward gynecologic high-dose-rate brachytherapy treatments using ultrasound-compatible cylinders in non–model-based dose calculation workflows. Methods: Monte Carlo simulations were performed using EGSnrc application egs_brachy in cylinders of polymethylpentene (TPX) plastic, water, and PMMA. Simulations were performed of five 192Ir sources placed longitudinally in ∼3.7 cm diameter, 5.0 cm length cylinders (matching physical cylinders used in film measurements). TPX and PMMA dose distributions and percentage depth dose curves were compared relative to water. Film measurements were performed to validate egs_brachy simulations. TPX and PMMA cylinders were placed in a water tank using 3D-printed supports to position film radially and touching the surface of the cylinders. The same five 192Ir dwell positions were delivered as simulated in egs_brachy. Results: The egs_brachy and film percentage depth doses agreed within film uncertainties. The egs_brachy relative dose difference between TPX and water was (0.74 ± 0.09)% and between PMMA and water was (-0.79 ± 0.09)% over the dose scoring phantom. Dose differences for TPX and PMMA relative to water were less than ± 1% within 5 cm of the cylinder surface. Conclusions: In a solid sonolucent sheath of TPX, the dosimetric differences are comparable with PMMA and other applicator materials in clinical use. No additional uncertainty to dose calculation is introduced when treating through TPX cylinders compared with current applicator materials, and therefore, it is acceptable to perform gynecologic brachytherapy treatments with a sonolucent sheath inserted during radiation delivery.

Original languageEnglish (US)
Pages (from-to)265-271
Number of pages7
JournalBrachytherapy
Volume20
Issue number1
DOIs
StatePublished - Jan 1 2021
Externally publishedYes

Keywords

  • 3D ultrasound
  • Dosimetry
  • Gynecologic brachytherapy
  • High-dose-rate brachytherapy
  • Transvaginal ultrasound

ASJC Scopus subject areas

  • Radiology Nuclear Medicine and imaging
  • Oncology

Fingerprint

Dive into the research topics of 'Dosimetry of a sonolucent material for an ultrasound-compatible gynecologic high-dose-rate brachytherapy cylinder using Monte Carlo simulation and radiochromic film'. Together they form a unique fingerprint.

Cite this