TY - JOUR
T1 - Dnmt3a deletion cooperates with the Flt3/ITD mutation to drive leukemogenesis in a murine model
AU - Poitras, Jennifer L.
AU - Heiser, Diane
AU - Li, Li
AU - Nguyen, Bao
AU - Nagai, Kozo
AU - Duffield, Amy S.
AU - Gamper, Christopher
AU - Small, Donald
N1 - Funding Information:
We would like to thank members of the Small Lab for helpful discussions, and the flow cytometry core in the Department of Oncology at Johns Hopkins University, most notably Lee Blosser and Ada Tam. J.P. designed and performed experiments, analyzed data and wrote the manuscript; D.H. designed and performed experiments and analyzed data; L.L., B.N., K.N. and A.D. performed experiments; C.G. provided mouse model and experimental guidance; and D.S. designed experiments and revised the manuscript. The project described was supported by grants from the National Cancer Institute (CA90668, P30 CA006973), Rally Foundation (The Truth 365 grant), Commonwealth Foundation and Giant Food Pediatric Cancer Research Fund. D.S. is also supported by the Kyle Haydock Professorship.
PY - 2016
Y1 - 2016
N2 - Internal tandem duplications of the juxtamembrane domain of FLT3 (FLT3/ITD) are among the most common mutations in Acute Myeloid Leukemia (AML). Resulting in constitutive activation of the kinase, FLT3/ITD portends a particularly poor prognosis, with reduced overall survival and increased rates of relapse. We previously generated a knock-in mouse, harboring an internal tandem duplication at the endogenous Flt3 locus, which develops a fatal myeloproliferative neoplasm (MPN), but fails to develop acute leukemia, suggesting additional mutations are necessary for transformation. To investigate the potential cooperativity of FLT3/ITD and mutant DNMT3A, we bred a conditional Dnmt3a knockout to a substrain of our Flt3/ITD knock-in mice, and found deletion of Dnmt3a significantly reduced median survival of Flt3ITD/+ mice in a dose dependent manner. As expected, pIpC treated Flt3ITD/+ mice solely developed MPN, while Flt3ITD/+;Dnmt3af/f and Flt3ITD/+;Dnmt3af/+ developed a spectrum of neoplasms, including MPN, T-ALL, and AML. Functionally, FLT3/ITD and DNMT3A deletion cooperate to expand LT-HSCs, which exhibit enhanced self-renewal in serial re-plating assays. These results illustrate that DNMT3A loss cooperates with FLT3/ITD to generate hematopoietic neoplasms, including AML. In combination with FLT3/ITD, homozygous Dnmt3a knock-out results in reduced time to disease onset, LT-HSC expansion, and a higher incidence of T-ALL compared with loss of just one allele. The co-occurrence of FLT3 and DNMT3A mutations in AML, as well as subsets of T-ALL, suggests the Flt3ITD/+;Dnmt3af/f model may serve as a valuable resource for delineating effective therapeutic strategies in two clinically relevant contexts.
AB - Internal tandem duplications of the juxtamembrane domain of FLT3 (FLT3/ITD) are among the most common mutations in Acute Myeloid Leukemia (AML). Resulting in constitutive activation of the kinase, FLT3/ITD portends a particularly poor prognosis, with reduced overall survival and increased rates of relapse. We previously generated a knock-in mouse, harboring an internal tandem duplication at the endogenous Flt3 locus, which develops a fatal myeloproliferative neoplasm (MPN), but fails to develop acute leukemia, suggesting additional mutations are necessary for transformation. To investigate the potential cooperativity of FLT3/ITD and mutant DNMT3A, we bred a conditional Dnmt3a knockout to a substrain of our Flt3/ITD knock-in mice, and found deletion of Dnmt3a significantly reduced median survival of Flt3ITD/+ mice in a dose dependent manner. As expected, pIpC treated Flt3ITD/+ mice solely developed MPN, while Flt3ITD/+;Dnmt3af/f and Flt3ITD/+;Dnmt3af/+ developed a spectrum of neoplasms, including MPN, T-ALL, and AML. Functionally, FLT3/ITD and DNMT3A deletion cooperate to expand LT-HSCs, which exhibit enhanced self-renewal in serial re-plating assays. These results illustrate that DNMT3A loss cooperates with FLT3/ITD to generate hematopoietic neoplasms, including AML. In combination with FLT3/ITD, homozygous Dnmt3a knock-out results in reduced time to disease onset, LT-HSC expansion, and a higher incidence of T-ALL compared with loss of just one allele. The co-occurrence of FLT3 and DNMT3A mutations in AML, as well as subsets of T-ALL, suggests the Flt3ITD/+;Dnmt3af/f model may serve as a valuable resource for delineating effective therapeutic strategies in two clinically relevant contexts.
KW - Acute myeloid leukemia
KW - DNMT3a
KW - FLT3
KW - Internal tandem duplication
KW - Mouse model
UR - http://www.scopus.com/inward/record.url?scp=84994299034&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84994299034&partnerID=8YFLogxK
U2 - 10.18632/oncotarget.11986
DO - 10.18632/oncotarget.11986
M3 - Article
C2 - 27636998
AN - SCOPUS:84994299034
SN - 1949-2553
VL - 7
SP - 69124
EP - 69135
JO - Oncotarget
JF - Oncotarget
IS - 43
ER -