TY - JOUR
T1 - DNA methylation mediates the effect of maternal smoking on offspring birthweight
T2 - a birth cohort study of multi-ethnic US mother–newborn pairs
AU - Xu, Richard
AU - Hong, Xiumei
AU - Zhang, Boyang
AU - Huang, Wanyu
AU - Hou, Wenpin
AU - Wang, Guoying
AU - Wang, Xiaobin
AU - Igusa, Tak
AU - Liang, Liming
AU - Ji, Hongkai
N1 - Funding Information:
The Boston Birth Cohort (the parent study) was supported in part by the National Institutes of Health (NIH) grants (R21ES011666, 2R01HD041702, R21HD066471, R01HD086013, R01HD098232, R21AI154233, R01ES031272, R03HD096136, and R01ES031521). This information or content and conclusions are those of the author and should not be construed as the official position or policy of, nor should any endorsements be inferred by the funding agencies. Richard Xu is supported by the Johns Hopkins University Provost’s Undergraduate Research Award (PURA).
Funding Information:
The authors wish to thank the study participants in the BBC, the nursing staff at labor and delivery of the Boston Medical Center, as well as the field team for their contributions to the Boston Birth Cohort.
Publisher Copyright:
© 2021, The Author(s).
PY - 2021/12
Y1 - 2021/12
N2 - Background: Maternal smoking affects more than half a million pregnancies each year in the US and is known to result in fetal growth restriction as measured by lower birthweight and its associated long-term consequences. Maternal smoking also has been linked to altered fetal DNA methylation (DNAm). However, what remains largely unexplored is whether these DNAm alterations are merely markers of smoking exposure or if they also have implications for health outcomes. This study tested the hypothesis that fetal DNAm mediates the effect of maternal smoking on newborn birthweight. Methods: This study included mother–newborn pairs from a US predominantly urban, low-income multi-ethnic birth cohort. DNAm in cord blood were determined using the Illumina Infinium MethylationEPIC BeadChip. After standard quality control and normalization procedures, an epigenome-wide association study (EWAS) of maternal smoking was performed using linear regression models, controlling for maternal age, education, race, parity, pre-pregnancy body mass index, alcohol consumption, gestational age, maternal pregestational/gestational diabetes, child sex, cord blood cell compositions and batch effects. To quantify the degree to which cord DNAm mediates the smoking-birthweight association, the VanderWeele-Vansteelandt approach for single mediator and structural equational model for multiple mediators were used, adjusting for pertinent covariates. Results: The study included 954 mother–newborn pairs. Among mothers, 165 (17.3%) ever smoked before or during pregnancy. Newborns with smoking exposure had on average 258 g lower birthweight than newborns without exposure (P < 0.001). Using a false discovery rate (FDR) < 0.05 as the significance cutoff, the EWAS identified 38 differentially methylated CpG sites associated with maternal smoking. Of those, 17 CpG sites were mapped to previously reported genes: GFI1, AHRR, CYP1A1, and CNTNAP2; 8 of those, located in the first three genes, were Bonferroni significantly associated with newborn birthweight and mediated the smoking-birthweight association. The combined mediation effect of the three genes explained 67.8% of the smoking-birthweight association. Conclusions: Our study not only lends further support that maternal smoking alters fetal DNAm in a multiethnic population, but also suggests that fetal DNAm substantially mediates the maternal smoking–birthweight association. Our findings, if further validated, indicate that DNAm modification is likely an important pathway by which maternal smoking impairs fetal growth and, perhaps, even long-term health outcomes.
AB - Background: Maternal smoking affects more than half a million pregnancies each year in the US and is known to result in fetal growth restriction as measured by lower birthweight and its associated long-term consequences. Maternal smoking also has been linked to altered fetal DNA methylation (DNAm). However, what remains largely unexplored is whether these DNAm alterations are merely markers of smoking exposure or if they also have implications for health outcomes. This study tested the hypothesis that fetal DNAm mediates the effect of maternal smoking on newborn birthweight. Methods: This study included mother–newborn pairs from a US predominantly urban, low-income multi-ethnic birth cohort. DNAm in cord blood were determined using the Illumina Infinium MethylationEPIC BeadChip. After standard quality control and normalization procedures, an epigenome-wide association study (EWAS) of maternal smoking was performed using linear regression models, controlling for maternal age, education, race, parity, pre-pregnancy body mass index, alcohol consumption, gestational age, maternal pregestational/gestational diabetes, child sex, cord blood cell compositions and batch effects. To quantify the degree to which cord DNAm mediates the smoking-birthweight association, the VanderWeele-Vansteelandt approach for single mediator and structural equational model for multiple mediators were used, adjusting for pertinent covariates. Results: The study included 954 mother–newborn pairs. Among mothers, 165 (17.3%) ever smoked before or during pregnancy. Newborns with smoking exposure had on average 258 g lower birthweight than newborns without exposure (P < 0.001). Using a false discovery rate (FDR) < 0.05 as the significance cutoff, the EWAS identified 38 differentially methylated CpG sites associated with maternal smoking. Of those, 17 CpG sites were mapped to previously reported genes: GFI1, AHRR, CYP1A1, and CNTNAP2; 8 of those, located in the first three genes, were Bonferroni significantly associated with newborn birthweight and mediated the smoking-birthweight association. The combined mediation effect of the three genes explained 67.8% of the smoking-birthweight association. Conclusions: Our study not only lends further support that maternal smoking alters fetal DNAm in a multiethnic population, but also suggests that fetal DNAm substantially mediates the maternal smoking–birthweight association. Our findings, if further validated, indicate that DNAm modification is likely an important pathway by which maternal smoking impairs fetal growth and, perhaps, even long-term health outcomes.
KW - DNA methylation
KW - Epigenome-wide association study
KW - Low birthweight
KW - Maternal smoking
KW - Mediation analysis
UR - http://www.scopus.com/inward/record.url?scp=85101998897&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85101998897&partnerID=8YFLogxK
U2 - 10.1186/s13148-021-01032-6
DO - 10.1186/s13148-021-01032-6
M3 - Article
C2 - 33663600
AN - SCOPUS:85101998897
SN - 1868-7075
VL - 13
JO - Clinical Epigenetics
JF - Clinical Epigenetics
IS - 1
M1 - 47
ER -