Dissection and immunostaining of larval salivary glands from anopheles gambiae mosquitoes

Michelle Z. Chiu, Steven Lannon, Marisol Luchetti, Michael B. Wells, Deborah J. Andrew

Research output: Contribution to journalArticlepeer-review

Abstract

Mosquito salivary glands (SGs) are a requisite gateway organ for the transmission of insect-borne pathogens. Disease-causing agents, including viruses and the Plasmodium parasites that cause malaria, accumulate in the secretory cavities of SG cells. Here, they are poised for transmission to their vertebrate hosts during a subsequent blood meal. As adult glands form as an elaboration of larval SG duct bud remnants that persist beyond early pupal SG histolysis, the larval SG is an ideal target for interventions that limit disease transmission. Understanding larval SG development can help develop a better understanding of its morphology and functional adaptations and aid in the assessment of new interventions that target this organ. This video protocol demonstrates an efficient technique for isolating, fixing, and staining larval SGs from Anopheles gambiae mosquitoes. Glands dissected from larvae in a 25% ethanol solution are fixed in a methanol-glacial acetic acid mixture, followed by a cold acetone wash. After a few rinses in phosphate-buffered saline (PBS), SGs can be stained with a broad array of marker dyes and/or antisera against SG-expressed proteins. This method for larval SG isolation could also be used to collect tissue for in situ hybridization analysis, other transcriptomic applications, and proteomic studies.

Original languageEnglish (US)
Article numbere62989
JournalJournal of Visualized Experiments
Volume2021
Issue number175
DOIs
StatePublished - Sep 2021

ASJC Scopus subject areas

  • General Neuroscience
  • General Chemical Engineering
  • General Biochemistry, Genetics and Molecular Biology
  • General Immunology and Microbiology

Fingerprint

Dive into the research topics of 'Dissection and immunostaining of larval salivary glands from anopheles gambiae mosquitoes'. Together they form a unique fingerprint.

Cite this