TY - GEN
T1 - Direct 4D parametric image reconstruction with plasma input and reference tissue models in reversible binding imaging
AU - Rahmim, Arman
AU - Zhou, Yun
AU - Tang, Jing
AU - Wong, Dean F.
PY - 2009
Y1 - 2009
N2 - The most active area in brain PET ligand development and imaging continues to involve receptor/transporter studies involving reversible binding. The focus of this work has been to develop direct 4D parametric image reconstruction techniques for reversible binding imaging. Based on a recent graphical analysis formulation [1], we developed a closed-form 4D EM algorithm to directly reconstruct distribution volume (DV) parametric images using a plasma input model. Furthermore, while previous work in the area of 4D imaging has been primarily limited to plasma input models, we sought to also develop reference tissue model schemes whereby distribution volume ratio (DVR) parametric images were reconstructed by the reference tissue model within the 4D image reconstruction task (using the cerebellum as reference). The means of parameters estimated from 55 human 11C-raclopride dynamic PET studies were used for simulation (22 realizations) using a mathematical brain phantom. Images were reconstructed using standard FBP or EM methods followed by modeling, as well as the proposed direct methods. Noise vs. bias quantitative measurements were performed in various regions of the brain. Direct 4D EM reconstruction resulted in substantial visual and quantitative accuracy improvements (over 100% noise reduction, with matched bias, in both plasma and reference-tissue input models). Notable improvements were also observed in the coefficient of variation (COV) of the estimated binding potential (BP) values, including even for the relatively low BP regions of grey and thalamus, suggesting the ability for robust parameter estimation even in such regions.
AB - The most active area in brain PET ligand development and imaging continues to involve receptor/transporter studies involving reversible binding. The focus of this work has been to develop direct 4D parametric image reconstruction techniques for reversible binding imaging. Based on a recent graphical analysis formulation [1], we developed a closed-form 4D EM algorithm to directly reconstruct distribution volume (DV) parametric images using a plasma input model. Furthermore, while previous work in the area of 4D imaging has been primarily limited to plasma input models, we sought to also develop reference tissue model schemes whereby distribution volume ratio (DVR) parametric images were reconstructed by the reference tissue model within the 4D image reconstruction task (using the cerebellum as reference). The means of parameters estimated from 55 human 11C-raclopride dynamic PET studies were used for simulation (22 realizations) using a mathematical brain phantom. Images were reconstructed using standard FBP or EM methods followed by modeling, as well as the proposed direct methods. Noise vs. bias quantitative measurements were performed in various regions of the brain. Direct 4D EM reconstruction resulted in substantial visual and quantitative accuracy improvements (over 100% noise reduction, with matched bias, in both plasma and reference-tissue input models). Notable improvements were also observed in the coefficient of variation (COV) of the estimated binding potential (BP) values, including even for the relatively low BP regions of grey and thalamus, suggesting the ability for robust parameter estimation even in such regions.
UR - http://www.scopus.com/inward/record.url?scp=77951187157&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77951187157&partnerID=8YFLogxK
U2 - 10.1109/NSSMIC.2009.5402037
DO - 10.1109/NSSMIC.2009.5402037
M3 - Conference contribution
AN - SCOPUS:77951187157
SN - 9781424439621
T3 - IEEE Nuclear Science Symposium Conference Record
SP - 2516
EP - 2522
BT - 2009 IEEE Nuclear Science Symposium Conference Record, NSS/MIC 2009
T2 - 2009 IEEE Nuclear Science Symposium Conference Record, NSS/MIC 2009
Y2 - 25 October 2009 through 31 October 2009
ER -