Direct 4D parametric image reconstruction with plasma input and reference tissue models in reversible binding imaging

Arman Rahmim, Yun Zhou, Jing Tang, Dean F. Wong

Research output: Chapter in Book/Report/Conference proceedingConference contribution

9 Scopus citations

Abstract

The most active area in brain PET ligand development and imaging continues to involve receptor/transporter studies involving reversible binding. The focus of this work has been to develop direct 4D parametric image reconstruction techniques for reversible binding imaging. Based on a recent graphical analysis formulation [1], we developed a closed-form 4D EM algorithm to directly reconstruct distribution volume (DV) parametric images using a plasma input model. Furthermore, while previous work in the area of 4D imaging has been primarily limited to plasma input models, we sought to also develop reference tissue model schemes whereby distribution volume ratio (DVR) parametric images were reconstructed by the reference tissue model within the 4D image reconstruction task (using the cerebellum as reference). The means of parameters estimated from 55 human 11C-raclopride dynamic PET studies were used for simulation (22 realizations) using a mathematical brain phantom. Images were reconstructed using standard FBP or EM methods followed by modeling, as well as the proposed direct methods. Noise vs. bias quantitative measurements were performed in various regions of the brain. Direct 4D EM reconstruction resulted in substantial visual and quantitative accuracy improvements (over 100% noise reduction, with matched bias, in both plasma and reference-tissue input models). Notable improvements were also observed in the coefficient of variation (COV) of the estimated binding potential (BP) values, including even for the relatively low BP regions of grey and thalamus, suggesting the ability for robust parameter estimation even in such regions.

Original languageEnglish (US)
Title of host publication2009 IEEE Nuclear Science Symposium Conference Record, NSS/MIC 2009
Pages2516-2522
Number of pages7
DOIs
StatePublished - 2009
Externally publishedYes
Event2009 IEEE Nuclear Science Symposium Conference Record, NSS/MIC 2009 - Orlando, FL, United States
Duration: Oct 25 2009Oct 31 2009

Publication series

NameIEEE Nuclear Science Symposium Conference Record
ISSN (Print)1095-7863

Other

Other2009 IEEE Nuclear Science Symposium Conference Record, NSS/MIC 2009
Country/TerritoryUnited States
CityOrlando, FL
Period10/25/0910/31/09

ASJC Scopus subject areas

  • Radiation
  • Nuclear and High Energy Physics
  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of 'Direct 4D parametric image reconstruction with plasma input and reference tissue models in reversible binding imaging'. Together they form a unique fingerprint.

Cite this