Differential susceptibility to experimental glaucoma among 3 mouse strains using bead and viscoelastic injection

Frances E. Cone, Scott E. Gelman, Janice L. Son, Mary E. Pease, Harry A. Quigley

Research output: Contribution to journalArticlepeer-review

113 Scopus citations

Abstract

The purpose of this experiment was to test the susceptibility to retinal ganglion cell (RGC) axon loss and RGC layer cell loss from experimental glaucoma among 3 mouse strains, and between younger and older mice. We obstructed the mouse aqueous outflow channels by injecting 2 μL of 6 μm diameter, polystyrene beads followed by 3 μL of viscoelastic solution into the anterior chamber with a glass micropipette. We evaluated intraocular pressure (IOP) and damage to RGC as measured by optic nerve axon counts and RGC layer neuron counts in 3 strains of young mice (2 month old C57BL/6, DBA/2J, and CD1) and 10 month C57BL/6 mice. Bead and viscoelastic injection produced IOP elevation at ≥1 time point in 94.1% of eyes (112/119), with mean IOP difference from fellow eyes of 4.4 ± 3.0 mmHg. By 6-12 weeks, injected eyes were 10.8% longer and 7.6% wider (p < 0.0001). Young DBA/2J and C57BL/6 eyes increased axial length significantly more than young CD1 or older C57BL/6 (all p ≤ 0.02). RGC layer and axon loss was greatest in CD1 mice, significantly more than the other groups (p from 0.04 to <0.0001). Young C57BL/6 eyes elongated more and lost more RGC layer cells than older C57BL/6 mice (p = 0.02 and 0.01, respectively). With this mouse glaucoma model, there was differential susceptibility to ocular elongation and RGC layer and axon damage among mouse strains and by age. Factors that determine sensitivity to RGC injury can be studied using transgenic mouse strains with inducible models.

Original languageEnglish (US)
Pages (from-to)415-424
Number of pages10
JournalExperimental eye research
Volume91
Issue number3
DOIs
StatePublished - Sep 2010

Keywords

  • Aqueous outflow channels
  • Experimental
  • Ganglion cells
  • Glaucoma
  • Mouse
  • Polystyrene beads
  • Retina

ASJC Scopus subject areas

  • Ophthalmology
  • Sensory Systems
  • Cellular and Molecular Neuroscience

Fingerprint

Dive into the research topics of 'Differential susceptibility to experimental glaucoma among 3 mouse strains using bead and viscoelastic injection'. Together they form a unique fingerprint.

Cite this