Difference in Network Effects of Pulsatile and Galvanic Stimulation

Paul Adkisson, Gene Y. Fridman, Cynthia R. Steinhardt

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Biphasic pulsatile stimulation is the present standard for neural prosthetic use, and it is used to understand connectivity and functionality of the brain in brain mapping studies. While pulses have been shown to drive behavioral changes, such as biasing decision making, they have deficits. For example, cochlear implants restore hearing but lack the ability to restore pitch perception. Recent work shows that pulses produce artificial synchrony in networks of neurons and non-linear changes in firing rate with pulse amplitude. Studies also show galvanic stimulation, delivery of current for extended periods of time, produces more naturalistic behavioral responses than pulses. In this paper, we use a winner-take-all decision-making network model to investigate differences between pulsatile and galvanic stimulation at the single neuron and network level while accurately modeling the effects of pulses on neurons for the first time. Results show pulses bias spike timing and make neurons more resistive to natural network inputs than galvanic stimulation at an equivalent current amplitude. Clinical Relevance- This establishes that pulsatile stimulation may disrupt natural spike timing and network-level interactions while certain parameterizations of galvanic stimulation avoid these effects and can drive network firing more naturally.

Original languageEnglish (US)
Title of host publication44th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2022
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages3093-3099
Number of pages7
ISBN (Electronic)9781728127828
DOIs
StatePublished - 2022
Event44th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2022 - Glasgow, United Kingdom
Duration: Jul 11 2022Jul 15 2022

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
Volume2022-July
ISSN (Print)1557-170X

Conference

Conference44th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2022
Country/TerritoryUnited Kingdom
CityGlasgow
Period7/11/227/15/22

ASJC Scopus subject areas

  • Signal Processing
  • Health Informatics
  • Computer Vision and Pattern Recognition
  • Biomedical Engineering

Fingerprint

Dive into the research topics of 'Difference in Network Effects of Pulsatile and Galvanic Stimulation'. Together they form a unique fingerprint.

Cite this