TY - GEN
T1 - Development of a miniaturized 3-DOF force sensing instrument for robotically assisted retinal microsurgery and preliminary results
AU - He, Xingchi
AU - Gehlbach, Peter
AU - Handa, James
AU - Taylor, Russell
AU - Iordachita, Iulian
PY - 2014/9/30
Y1 - 2014/9/30
N2 - Lack of force sensing is one of the most formidable technical challenges in retinal microsurgery. Incorporating high sensitivity force sensing into the ophthalmic tools has the potential to provide the surgeon useful force feedback and to enable safe robotic assistance. This paper presents a new design of a three degrees of freedom force sensing instrument based on fiber Bragg grating sensors. A new flexure is developed to achieve high axial force sensing sensitivity and low crosstalk noise. The force sensing segment of the tool, located directly proximal to the tool tip, is φ0.9×8 mm. An extensive calibration shows that the force sensor can measure the transverse and axial force up to 21 mN with 0.5 mN and 3.3 mN accuracy, respectively. The new flexure design demonstrates the potential to improve axial force sensing. Analysis of the experiment results suggests improvements for the future iteration.
AB - Lack of force sensing is one of the most formidable technical challenges in retinal microsurgery. Incorporating high sensitivity force sensing into the ophthalmic tools has the potential to provide the surgeon useful force feedback and to enable safe robotic assistance. This paper presents a new design of a three degrees of freedom force sensing instrument based on fiber Bragg grating sensors. A new flexure is developed to achieve high axial force sensing sensitivity and low crosstalk noise. The force sensing segment of the tool, located directly proximal to the tool tip, is φ0.9×8 mm. An extensive calibration shows that the force sensor can measure the transverse and axial force up to 21 mN with 0.5 mN and 3.3 mN accuracy, respectively. The new flexure design demonstrates the potential to improve axial force sensing. Analysis of the experiment results suggests improvements for the future iteration.
UR - http://www.scopus.com/inward/record.url?scp=84918577561&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84918577561&partnerID=8YFLogxK
U2 - 10.1109/biorob.2014.6913785
DO - 10.1109/biorob.2014.6913785
M3 - Conference contribution
AN - SCOPUS:84918577561
T3 - Proceedings of the IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics
SP - 252
EP - 258
BT - "2014 5th IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics, BioRob 2014
A2 - Carloni, Raffaella
A2 - Masia, Lorenzo
A2 - Sabater-Navarro, Jose Maria
A2 - Ackermann, Marko
A2 - Agrawal, Sunil
A2 - Ajoudani, Arash
A2 - Artemiadis, Panagiotis
A2 - Bianchi, Matteo
A2 - Lanari Bo, Antonio Padilha
A2 - Casadio, Maura
A2 - Cleary, Kevin
A2 - Deshpande, Ashish
A2 - Formica, Domenico
A2 - Fumagalli, Matteo
A2 - Garcia-Aracil, Nicolas
A2 - Godfrey, Sasha Blue
A2 - Khalil, Islam S.M.
A2 - Lambercy, Olivier
A2 - Loureiro, Rui C. V.
A2 - Mattos, Leonardo
A2 - Munoz, Victor
A2 - Park, Hyung-Soon
A2 - Rodriguez Cheu, Luis Eduardo
A2 - Saltaren, Roque
A2 - Siqueira, Adriano A. G.
A2 - Squeri, Valentina
A2 - Stienen, Arno H.A.
A2 - Tsagarakis, Nikolaos
A2 - Van der Kooij, Herman
A2 - Vanderborght, Bram
A2 - Vitiello, Nicola
A2 - Zariffa, Jose
A2 - Zollo, Loredana
PB - IEEE Computer Society
T2 - 5th IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics, BioRob 2014
Y2 - 12 August 2014 through 15 August 2014
ER -