Development of a low-cost imaging system for remote mosquito surveillance

Adam Goodwin, Margaret Glancey, Tristan Ford, Laura Scavo, Jewell Brey, Collyn Heier, Nicholas J. Durr, Soumyadipta Acharya

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

Targeted vector control strategies aiming to prevent mosquito borne disease are severely limited by the logistical burden of vector surveillance, the monitoring of an area to understand mosquito species composition, abundance and spatial distribution. We describe development of an imaging system within a mosquito trap to remotely identify caught mosquitoes, including selection of the image resolution requirement, a design to meet that specification, and evaluation of the system. The necessary trap image resolution was determined to be 16 lp/mm, or 31.25um. An optics system meeting these specifications was implemented in a BG-GAT mosquito trap. Its ability to provide images suitable for accurate specimen identification was evaluated by providing entomologists with images of individual specimens, taken either with a microscope or within the trap and asking them to provide a species identification, then comparing these results. No difference in identification accuracy between the microscope and the trap images was found; however, due to limitations of human species classification from a single image, the system is only able to provide accurate genus-level mosquito classification. Further integration of this system with machine learning computer vision algorithms has the potential to provide near-real time mosquito surveillance data at the species level.

Original languageEnglish (US)
Pages (from-to)2560-2569
Number of pages10
JournalBiomedical Optics Express
Volume11
Issue number5
DOIs
StatePublished - May 1 2020
Externally publishedYes

ASJC Scopus subject areas

  • Biotechnology
  • Atomic and Molecular Physics, and Optics

Fingerprint

Dive into the research topics of 'Development of a low-cost imaging system for remote mosquito surveillance'. Together they form a unique fingerprint.

Cite this