TY - JOUR
T1 - Development and Evaluation of an Algorithm for the Computer-Assisted Segmentation of the Human Hypothalamus on 7-Tesla Magnetic Resonance Images
AU - Schindler, Stephanie
AU - Schönknecht, Peter
AU - Schmidt, Laura
AU - Anwander, Alfred
AU - Strauß, Maria
AU - Trampel, Robert
AU - Bazin, Pierre Louis
AU - Möller, Harald E.
AU - Hegerl, Ulrich
AU - Turner, Robert
AU - Geyer, Stefan
PY - 2013/7/23
Y1 - 2013/7/23
N2 - Post mortem studies have shown volume changes of the hypothalamus in psychiatric patients. With 7T magnetic resonance imaging this effect can now be investigated in vivo in detail. To benefit from the sub-millimeter resolution requires an improved segmentation procedure. The traditional anatomical landmarks of the hypothalamus were refined using 7T T1-weighted magnetic resonance images. A detailed segmentation algorithm (unilateral hypothalamus) was developed for colour-coded, histogram-matched images, and evaluated in a sample of 10 subjects. Test-retest and inter-rater reliabilities were estimated in terms of intraclass-correlation coefficients (ICC) and Dice's coefficient (DC). The computer-assisted segmentation algorithm ensured test-retest reliabilities of ICC≥.97 (DC≥96.8) and inter-rater reliabilities of ICC≥.94 (DC = 95.2). There were no significant volume differences between the segmentation runs, raters, and hemispheres. The estimated volumes of the hypothalamus lie within the range of previous histological and neuroimaging results. We present a computer-assisted algorithm for the manual segmentation of the human hypothalamus using T1-weighted 7T magnetic resonance imaging. Providing very high test-retest and inter-rater reliabilities, it outperforms former procedures established at 1.5T and 3T magnetic resonance images and thus can serve as a gold standard for future automated procedures.
AB - Post mortem studies have shown volume changes of the hypothalamus in psychiatric patients. With 7T magnetic resonance imaging this effect can now be investigated in vivo in detail. To benefit from the sub-millimeter resolution requires an improved segmentation procedure. The traditional anatomical landmarks of the hypothalamus were refined using 7T T1-weighted magnetic resonance images. A detailed segmentation algorithm (unilateral hypothalamus) was developed for colour-coded, histogram-matched images, and evaluated in a sample of 10 subjects. Test-retest and inter-rater reliabilities were estimated in terms of intraclass-correlation coefficients (ICC) and Dice's coefficient (DC). The computer-assisted segmentation algorithm ensured test-retest reliabilities of ICC≥.97 (DC≥96.8) and inter-rater reliabilities of ICC≥.94 (DC = 95.2). There were no significant volume differences between the segmentation runs, raters, and hemispheres. The estimated volumes of the hypothalamus lie within the range of previous histological and neuroimaging results. We present a computer-assisted algorithm for the manual segmentation of the human hypothalamus using T1-weighted 7T magnetic resonance imaging. Providing very high test-retest and inter-rater reliabilities, it outperforms former procedures established at 1.5T and 3T magnetic resonance images and thus can serve as a gold standard for future automated procedures.
UR - http://www.scopus.com/inward/record.url?scp=84880713930&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84880713930&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0066394
DO - 10.1371/journal.pone.0066394
M3 - Article
C2 - 23935821
AN - SCOPUS:84880713930
SN - 1932-6203
VL - 8
JO - PLoS One
JF - PLoS One
IS - 7
M1 - e66394
ER -