Design and characterization of a miniaturized epi-illuminated microscope.

Kartikeya Murari, Elliot Greenwald, Ralph Etienne-Cummings, Gert Cauwenberghs, Nitish Thakor

Research output: Contribution to journalArticlepeer-review


The ability to observe functional and morphological changes in the brain is critical in understanding behavioral and developmental neuroscience. With advances in electronics and miniaturization, electrophysiological recordings from awake, behaving animals has allowed investigators to perform a multitude of behavioral studies by observing changes as an animal is engaged in certain tasks. Imaging offers advantages of observing structure as well as function, and the ability to monitor activity over large areas. However, imaging from an awake, behaving animal has not been explored well. We present the design and characterization of a miniaturized epi-illuminated optical system that is part of a larger goal to perform optical imaging in awake, behaving animals. The system comprises of a tunable light source and imaging optics in a small footprint of 18 mm diameter, 18 mm height and weight 5.7 grams. It offers a spatial illumination non-uniformity of 3.2% over a maximum field of view of 1.5 mm x 1.5 mm, negligible temporal illumination and temperature variation and controllable magnification. Uncorrected radial distortion was 5.3% (corrected to 1.8%) and the spatial frequency response was comparable to a reference system. The system was used to image cortical vasculature in an anesthetized rat.

Original languageEnglish (US)
Pages (from-to)5369-5372
Number of pages4
JournalConference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference
StatePublished - 2009
Externally publishedYes

ASJC Scopus subject areas

  • Computer Vision and Pattern Recognition
  • Signal Processing
  • Biomedical Engineering
  • Health Informatics


Dive into the research topics of 'Design and characterization of a miniaturized epi-illuminated microscope.'. Together they form a unique fingerprint.

Cite this