TY - JOUR
T1 - Dendritic trafficking of brain-derived neurotrophic factor mRNA
T2 - Regulation by translin-dependent and -independent mechanisms
AU - Wu, Yen Ching
AU - Williamson, Rebecca
AU - Li, Zhi
AU - Vicario, Annalisa
AU - Xu, Jerry
AU - Kasai, Masataka
AU - Chern, Yijuang
AU - Tongiorgi, Enrico
AU - Baraban, Jay M.
PY - 2011/3
Y1 - 2011/3
N2 - Dendritic trafficking and translation of brain-derived neurotrophic factor (BDNF) transcripts play a key role in mediating synaptic plasticity. Recently, we demonstrated that siRNA-mediated knockdown of translin, an RNA-binding protein, impairs KCl-induced dendritic trafficking of BDNF mRNA in cultured hippocampal neurons. We have now assessed whether translin deletion impairs dendritic trafficking of BDNF mRNA in hippocampal neurons in vivo. We have found that translin and its partner protein, trax, undergo dendritic translocation in response to treatment with pilocarpine, a pro-convulsant muscarinic agonist that increases dendritic trafficking of BDNF mRNA in hippocampal neurons. In translin knockout mice, the basal level of dendritic BDNF mRNA is decreased in CA1 pyramidal neurons. However, translin deletion does not block pilocarpine's ability to increase dendritic trafficking of BDNF mRNA indicating that the requirement for translin in this process varies with the stimulus employed to drive it. Consistent with this inference, we found that dendritic trafficking of BDNF mRNA induced by bath application of recombinant BDNF in cultured hippocampal neurons, is not blocked by siRNA-mediated knockdown of translin. Taken together, these in vivo and in vitro findings indicate that dendritic trafficking of BDNF mRNA can be mediated by both translin-dependent and -independent mechanisms.
AB - Dendritic trafficking and translation of brain-derived neurotrophic factor (BDNF) transcripts play a key role in mediating synaptic plasticity. Recently, we demonstrated that siRNA-mediated knockdown of translin, an RNA-binding protein, impairs KCl-induced dendritic trafficking of BDNF mRNA in cultured hippocampal neurons. We have now assessed whether translin deletion impairs dendritic trafficking of BDNF mRNA in hippocampal neurons in vivo. We have found that translin and its partner protein, trax, undergo dendritic translocation in response to treatment with pilocarpine, a pro-convulsant muscarinic agonist that increases dendritic trafficking of BDNF mRNA in hippocampal neurons. In translin knockout mice, the basal level of dendritic BDNF mRNA is decreased in CA1 pyramidal neurons. However, translin deletion does not block pilocarpine's ability to increase dendritic trafficking of BDNF mRNA indicating that the requirement for translin in this process varies with the stimulus employed to drive it. Consistent with this inference, we found that dendritic trafficking of BDNF mRNA induced by bath application of recombinant BDNF in cultured hippocampal neurons, is not blocked by siRNA-mediated knockdown of translin. Taken together, these in vivo and in vitro findings indicate that dendritic trafficking of BDNF mRNA can be mediated by both translin-dependent and -independent mechanisms.
KW - CA1 pyramidal neurons
KW - dendritic translation
KW - hippocampus
KW - pilocarpine
KW - trax
UR - http://www.scopus.com/inward/record.url?scp=79952442835&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=79952442835&partnerID=8YFLogxK
U2 - 10.1111/j.1471-4159.2010.07166.x
DO - 10.1111/j.1471-4159.2010.07166.x
M3 - Article
C2 - 21198640
AN - SCOPUS:79952442835
SN - 0022-3042
VL - 116
SP - 1112
EP - 1121
JO - Journal of Neurochemistry
JF - Journal of Neurochemistry
IS - 6
ER -