Defining the Contribution of CNTNAP2 to Autism Susceptibility

Srirangan Sampath, Shambu Bhat, Simone Gupta, Ashley O'Connor, Andrew B. West, Dan E. Arking, Aravinda Chakravarti

Research output: Contribution to journalArticlepeer-review

27 Scopus citations


Multiple lines of genetic evidence suggest a role for CNTNAP2 in autism. To assess its population impact we studied 2148 common single nucleotide polymorphisms (SNPs) using transmission disequilibrium test (TDT) across the entire ~3.3 Mb CNTNAP2 locus in 186 (408 trios) multiplex and 323 simplex families with autistic spectrum disorder (ASD). This analysis yielded two SNPs with nominal statistical significance (rs17170073, p = 2.0 x 10-4; rs2215798, p = 1.6 x 10-4) that did not survive multiple testing. In a combined analysis of all families, two highly correlated (r2 = 0.99) SNPs in intron 14 showed significant association with autism (rs2710093, p = 9.0 x 10-6; rs2253031, p = 2.5 x 10-5). To validate these findings and associations at SNPs from previous autism studies (rs7794745, rs2710102 and rs17236239) we genotyped 2051 additional families (572 multiplex and 1479 simplex). None of these variants were significantly associated with ASD after corrections for multiple testing. The analysis of Mendelian errors within each family did not indicate any segregating deletions. Nevertheless, a study of CNTNAP2 gene expression in brains of autistic patients and of normal controls, demonstrated altered expression in a subset of patients (p = 1.9 x10-5). Consequently, this study suggests that although CNTNAP2 dysregulation plays a role in some cases, its population contribution to autism susceptibility is limited.

Original languageEnglish (US)
Article numbere77906
JournalPloS one
Issue number10
StatePublished - Oct 17 2013

ASJC Scopus subject areas

  • General Biochemistry, Genetics and Molecular Biology
  • General Agricultural and Biological Sciences
  • General


Dive into the research topics of 'Defining the Contribution of CNTNAP2 to Autism Susceptibility'. Together they form a unique fingerprint.

Cite this