TY - JOUR
T1 - Deep learning for quality control of subcortical brain 3D shape models
AU - ENIGMA Consortium
AU - Petrov, Dmitry
AU - Gutman, Boris A.
AU - Kuznetsov, Egor
AU - van Erp, Theo G.M.
AU - Turner, Jessica A.
AU - Schmaal, Lianne
AU - Veltman, Dick
AU - Wang, Lei
AU - Alpert, Kathryn
AU - Isaev, Dmitry
AU - Zavaliangos-Petropulu, Artemis
AU - Ching, Christopher R.K.
AU - Calhoun, Vince
AU - Glahn, David
AU - Satterthwaite, Theodore D.
AU - Andreassen, Ole Andreas
AU - Borgwardt, Stefan
AU - Howells, Fleur
AU - Groenewold, Nynke
AU - Voineskos, Aristotle
AU - Radua, Joaquim
AU - Potkin, Steven G.
AU - Crespo-Facorro, Benedicto
AU - Tordesillas-Gutirrez, Diana
AU - Shen, Li
AU - Lebedeva, Irina
AU - Spalletta, Gianfranco
AU - Donohoe, Gary
AU - Kochunov, Peter
AU - Rosa, Pedro G.P.
AU - James, Anthony
AU - Dannlowski, Udo
AU - Baune, Bernhard T.
AU - Aleman, Andr
AU - Gotlib, Ian H.
AU - Walter, Henrik
AU - Walter, Martin
AU - Soares, Jair C.
AU - Ehrlich, Stefan
AU - Gur, Ruben C.
AU - Doan, N. Trung
AU - Agartz, Ingrid
AU - Westlye, Lars T.
AU - Harrisberger, Fabienne
AU - Riecher-Rössler, Anita
AU - Uhlmann, Anne
AU - Stein, Dan J.
AU - Dickie, Erin W.
AU - Pomarol-Clotet, Edith
AU - Fuentes-Claramonte, Paola
N1 - Publisher Copyright:
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2018/8/28
Y1 - 2018/8/28
N2 - We present several deep learning models for assessing the morphometric fidelity of deep grey matter region models extracted from brain MRI. We test three different convolutional neural net architectures (VGGNet, ResNet and Inception) over 2D maps of geometric features. Further, we present a novel geometry feature augmentation technique based on parametric spherical mapping. Finally, we present an approach for model decision visualization, allowing human raters to see the areas of subcortical shapes most likely to be deemed of failing quality by the machine. Our training data is comprised of 5200 subjects from the ENIGMA Schizophrenia MRI cohorts, and our test dataset contains 1500 subjects from the ENIGMA Major Depressive Disorder cohorts. Our final models reduce human rater time by 46-70%. ResNet outperforms VGGNet and Inception for all of our predictive tasks.
AB - We present several deep learning models for assessing the morphometric fidelity of deep grey matter region models extracted from brain MRI. We test three different convolutional neural net architectures (VGGNet, ResNet and Inception) over 2D maps of geometric features. Further, we present a novel geometry feature augmentation technique based on parametric spherical mapping. Finally, we present an approach for model decision visualization, allowing human raters to see the areas of subcortical shapes most likely to be deemed of failing quality by the machine. Our training data is comprised of 5200 subjects from the ENIGMA Schizophrenia MRI cohorts, and our test dataset contains 1500 subjects from the ENIGMA Major Depressive Disorder cohorts. Our final models reduce human rater time by 46-70%. ResNet outperforms VGGNet and Inception for all of our predictive tasks.
KW - Deep learning
KW - Quality checking
KW - Subcortical shape analysis
UR - http://www.scopus.com/inward/record.url?scp=85095661015&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85095661015&partnerID=8YFLogxK
U2 - 10.1101/402255
DO - 10.1101/402255
M3 - Article
AN - SCOPUS:85095661015
SN - 0309-1708
JO - Unknown Journal
JF - Unknown Journal
ER -