Deep Density Clustering of Unconstrained Faces

Wei An Lin, Jun Cheng Chen, Carlos D. Castillo, Rama Chellappa

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In this paper, we consider the problem of grouping a collection of unconstrained face images in which the number of subjects is not known. We propose an unsupervised clustering algorithm called Deep Density Clustering (DDC) which is based on measuring density affinities between local neighborhoods in the feature space. By learning the minimal covering sphere for each neighborhood, information about the underlying structure is encapsulated. The encapsulation is also capable of locating high-density region of the neighborhood, which aids in measuring the neighborhood similarity. We theoretically show that the encapsulation asymptotically converges to a Parzen window density estimator. Our experiments show that DDC is a superior candidate for clustering unconstrained faces when the number of subjects is unknown. Unlike conventional linkage and density-based methods that are sensitive to the selection operating points, DDC attains more consistent and improved performance. Furthermore, the density-aware property reduces the difficulty in finding appropriate operating points.

Original languageEnglish (US)
Title of host publicationProceedings - 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2018
PublisherIEEE Computer Society
Pages8128-8137
Number of pages10
ISBN (Electronic)9781538664209
DOIs
StatePublished - Dec 14 2018
Externally publishedYes
Event31st Meeting of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2018 - Salt Lake City, United States
Duration: Jun 18 2018Jun 22 2018

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
ISSN (Print)1063-6919

Conference

Conference31st Meeting of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2018
Country/TerritoryUnited States
CitySalt Lake City
Period6/18/186/22/18

ASJC Scopus subject areas

  • Software
  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'Deep Density Clustering of Unconstrained Faces'. Together they form a unique fingerprint.

Cite this