Cyclodextrin Modulated Type I Collagen Self-Assembly to Engineer Biomimetic Cornea Implants

Shoumyo Majumdar, Xiaokun Wang, Sven D. Sommerfeld, Jemin Jeremy Chae, Evangelia Nefeli Athanasopoulou, Lucas S. Shores, Xiaodong Duan, L. Mario Amzel, Francesco Stellacci, Oliver Schein, Qiongyu Guo, Anirudha Singh, Jennifer H. Elisseeff

Research output: Contribution to journalArticlepeer-review

14 Scopus citations

Abstract

Collagen-rich tissues in the cornea exhibit unique and highly organized extracellular matrix ultrastructures, which contribute to its high load-bearing capacity and light transmittance. Corneal collagen fibrils are controlled during development by small leucine-rich proteoglycans (SLRPs) that regulate the fibril diameter and spacing in order to achieve the unique optical transparency. Cyclodextrins (CDs) of varying size and chemical functionality for their ability to regulate collagen assembly during vitrification process are screened in order to create biosynthetic materials that mimic the native cornea structure. Addition of βCD to collagen vitrigels produces materials with aligned fibers and lamellae similar to native cornea, resulting in mechanically robust and transparent materials. Biochemistry analysis revealed that CD interacts with hydrophobic amino acids in collagen to influence assembly and fibril organization. To translate the self-assembled collagen materials for cornea reconstruction, custom molds for gelation and vitrification are engineered to create βCD/Col implants with curvature matching that of the cornea. Acellular βCD/Col materials are implanted in a rabbit partial keratoplasty model with interrupted sutures. The implants demonstrate tissue integration and support re-epithelialization. Therefore, the addition of CD molecules regulates collagen self-assembly and provides a simple process to engineer corneal mimetic substitutes with advanced structural and functional properties.

Original languageEnglish (US)
Article number1804076
JournalAdvanced Functional Materials
Volume28
Issue number41
DOIs
StatePublished - Oct 10 2018

Keywords

  • collagen
  • cornea
  • cyclodextrins
  • fibril alignment
  • self-assembly

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • General Chemistry
  • Condensed Matter Physics
  • General Materials Science
  • Electrochemistry
  • Biomaterials

Fingerprint

Dive into the research topics of 'Cyclodextrin Modulated Type I Collagen Self-Assembly to Engineer Biomimetic Cornea Implants'. Together they form a unique fingerprint.

Cite this