TY - JOUR
T1 - CXCR2 immunomodulatory therapy protects against microstructural white matter injury and gait abnormalities but does not mitigate deficits of cognition in a preclinical model of cerebral palsy
AU - Kitase, Yuma
AU - Madurai, Nethra K.
AU - Boyd, Rachel J.
AU - Gerner, Gwendolyn
AU - Bibic, Adnan
AU - McCallion, Andrew S.
AU - Chin, Eric
AU - Robinson, Shenandoah
AU - Jantzie, Lauren L.
N1 - Publisher Copyright:
© 2024 International Society for Neurochemistry.
PY - 2025/1
Y1 - 2025/1
N2 - Minimizing central nervous system (CNS) injury from preterm birth depends upon understanding the critical pathways that underlie essential neurodevelopmental and CNS pathophysiology. Signaling by chemokine (C-X-C motif) ligand 1 (CXCL1) through its cognate receptor, CXCR2 [(C-X-C motif) receptor 2] is essential for neurodevelopment. Increased CXCR2 signaling, however, is implicated in a variety of uterine and neuropathologies, and their role in the CNS injury associated with perinatal brain injury is poorly defined. To evaluate the long-term efficacy of CXCR2 blockade in functional repair of brain injury secondary to chorioamnionitis (CHORIO), we used an established preclinical rat model of cerebral palsy. We tested the hypothesis that transient postnatal CXCR2 antagonism with SB225002 would reduce gait deficits, hypermobility, hyperactivity, and disinhibition concomitant with repair of functional and anatomical white and gray matter injury. CHORIO was induced in pregnant Sprague Dawley rats on embryonic day 18 (E18). SB225002 (3 mg/kg) was administered intraperitoneally from postnatal day 1 (P1)-P5. Rats were aged to adulthood and tested for gait, open-field behavior and cognitive and executive function deficits using a touchscreen cognitive assessment platform. Results show that transient CXCR2 blockade attenuated microstructural white matter injury after CHORIO consistent with improved anatomical connectivity, and mitigated deficits in gait coordination, posture, balance, paw placement, and stepping (p < 0.05). Animals with CHORIO were hyperactive and hypermobile with fMRI deficits in neural circuitry central to cognition. However, CXCR2 antagonism in CHORIO animals did not normalize open-field behavior, neural activity, or cognition on a touchscreen task of discrimination learning (all p > 0.05). Studies in CXCR2 knockout mice confirmed significantly impaired cognitive performance independent of CHORIO. Taken together, transient postnatal blockade of CXCR2 ameliorates aspects of the lasting neural injury after CHORIO including normalizing gait deficits and white matter injury. However, improvement in essential functional and cognitive domains are not achieved limiting the utility of this therapeutic approach for treatment of perinatal brain injury. This study emphasizes the complex, multi-faceted role of chemokines in typical neurodevelopment, circuit formation, neural network function, and injury response. (Figure presented.)
AB - Minimizing central nervous system (CNS) injury from preterm birth depends upon understanding the critical pathways that underlie essential neurodevelopmental and CNS pathophysiology. Signaling by chemokine (C-X-C motif) ligand 1 (CXCL1) through its cognate receptor, CXCR2 [(C-X-C motif) receptor 2] is essential for neurodevelopment. Increased CXCR2 signaling, however, is implicated in a variety of uterine and neuropathologies, and their role in the CNS injury associated with perinatal brain injury is poorly defined. To evaluate the long-term efficacy of CXCR2 blockade in functional repair of brain injury secondary to chorioamnionitis (CHORIO), we used an established preclinical rat model of cerebral palsy. We tested the hypothesis that transient postnatal CXCR2 antagonism with SB225002 would reduce gait deficits, hypermobility, hyperactivity, and disinhibition concomitant with repair of functional and anatomical white and gray matter injury. CHORIO was induced in pregnant Sprague Dawley rats on embryonic day 18 (E18). SB225002 (3 mg/kg) was administered intraperitoneally from postnatal day 1 (P1)-P5. Rats were aged to adulthood and tested for gait, open-field behavior and cognitive and executive function deficits using a touchscreen cognitive assessment platform. Results show that transient CXCR2 blockade attenuated microstructural white matter injury after CHORIO consistent with improved anatomical connectivity, and mitigated deficits in gait coordination, posture, balance, paw placement, and stepping (p < 0.05). Animals with CHORIO were hyperactive and hypermobile with fMRI deficits in neural circuitry central to cognition. However, CXCR2 antagonism in CHORIO animals did not normalize open-field behavior, neural activity, or cognition on a touchscreen task of discrimination learning (all p > 0.05). Studies in CXCR2 knockout mice confirmed significantly impaired cognitive performance independent of CHORIO. Taken together, transient postnatal blockade of CXCR2 ameliorates aspects of the lasting neural injury after CHORIO including normalizing gait deficits and white matter injury. However, improvement in essential functional and cognitive domains are not achieved limiting the utility of this therapeutic approach for treatment of perinatal brain injury. This study emphasizes the complex, multi-faceted role of chemokines in typical neurodevelopment, circuit formation, neural network function, and injury response. (Figure presented.)
KW - chemokine
KW - chorioamnionitis
KW - connectivity
KW - CXCL1
KW - inflammation
KW - placenta
UR - http://www.scopus.com/inward/record.url?scp=85212128884&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85212128884&partnerID=8YFLogxK
U2 - 10.1111/jnc.16253
DO - 10.1111/jnc.16253
M3 - Article
C2 - 39680469
AN - SCOPUS:85212128884
SN - 0022-3042
VL - 169
JO - Journal of Neurochemistry
JF - Journal of Neurochemistry
IS - 1
M1 - e16253
ER -