TY - JOUR
T1 - Current progress in developing subunit vaccines against enterotoxigenic Escherichia coli-associated Diarrhea
AU - Zhang, Weiping
AU - Sack, David A.
N1 - Publisher Copyright:
Copyright © 2015, American Society for Microbiology. All Rights Reserved.
PY - 2015/9/1
Y1 - 2015/9/1
N2 - Diarrhea continues to be a leading cause of death in children <5 years of age, and enterotoxigenic Escherichia coli (ETEC) is the most common bacterial cause of children's diarrhea. Currently, there are no available vaccines against ETEC-associated diarrhea. Whole-cell vaccine candidates have been under development but require further improvements because they provide inadequate protection and produce unwanted adverse effects. Meanwhile, a newer approach using polypeptide or subunit vaccine candidates focusing on ETEC colonization factor antigens (CFAs) and enterotoxins, the major virulence determinants of ETEC diarrhea, shows substantial promise. A conservative CFA/I adhesin tip antigen and a CFA MEFA (multiepitope fusion antigen) were shown to induce cross-reactive antiadhesin antibodies that protected against adherence by multiple important CFAs. Genetic fusion of toxoids derived from ETEC heat-labile toxin (LT) and heat-stable toxin (STa) induced antibodies neutralizing both enterotoxins. Moreover, CFA-toxoid MEFA polypeptides, generated by fusing CFA MEFA to an STa-LT toxoid fusion, induced antiadhesin antibodies that broadly inhibited adherence of the seven most important ETEC CFAs associated with about 80% of the diarrhea cases caused by ETEC strains with known CFAs. This same antigen preparation also induced antitoxin antibodies that neutralized both toxins that are associated with all cases of ETEC diarrhea. Results from these studies suggest that polypeptide or subunit vaccines have the potential to effectively protect against ETEC diarrhea. In addition, novel adhesins and mucin proteases have been investigated as potential alternatives or, more likely, additional antigens for ETEC subunit vaccine development.
AB - Diarrhea continues to be a leading cause of death in children <5 years of age, and enterotoxigenic Escherichia coli (ETEC) is the most common bacterial cause of children's diarrhea. Currently, there are no available vaccines against ETEC-associated diarrhea. Whole-cell vaccine candidates have been under development but require further improvements because they provide inadequate protection and produce unwanted adverse effects. Meanwhile, a newer approach using polypeptide or subunit vaccine candidates focusing on ETEC colonization factor antigens (CFAs) and enterotoxins, the major virulence determinants of ETEC diarrhea, shows substantial promise. A conservative CFA/I adhesin tip antigen and a CFA MEFA (multiepitope fusion antigen) were shown to induce cross-reactive antiadhesin antibodies that protected against adherence by multiple important CFAs. Genetic fusion of toxoids derived from ETEC heat-labile toxin (LT) and heat-stable toxin (STa) induced antibodies neutralizing both enterotoxins. Moreover, CFA-toxoid MEFA polypeptides, generated by fusing CFA MEFA to an STa-LT toxoid fusion, induced antiadhesin antibodies that broadly inhibited adherence of the seven most important ETEC CFAs associated with about 80% of the diarrhea cases caused by ETEC strains with known CFAs. This same antigen preparation also induced antitoxin antibodies that neutralized both toxins that are associated with all cases of ETEC diarrhea. Results from these studies suggest that polypeptide or subunit vaccines have the potential to effectively protect against ETEC diarrhea. In addition, novel adhesins and mucin proteases have been investigated as potential alternatives or, more likely, additional antigens for ETEC subunit vaccine development.
UR - http://www.scopus.com/inward/record.url?scp=84941561651&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84941561651&partnerID=8YFLogxK
U2 - 10.1128/CVI.00224-15
DO - 10.1128/CVI.00224-15
M3 - Review article
C2 - 26135975
AN - SCOPUS:84941561651
SN - 1556-6811
VL - 22
SP - 983
EP - 991
JO - Clinical and Vaccine Immunology
JF - Clinical and Vaccine Immunology
IS - 9
ER -