Abstract
We herein describe the preparation, assembly, recognition characteristics, and biocompatibility of novel covalent basket cage CBC-11, composed of four molecular baskets linked to four trivalent aromatic amines through amide groups. The cage is tetrahedral in shape and similar in size to small proteins (Mw=8637 g/mol) with a spacious nonpolar interior for accommodating multiple guests. While 24 carboxylates at the outer surface of CBC-11 render it soluble in aqueous phosphate buffer (PBS) at pH=7.0, the amphiphilic nature prompts its assembly into nanoparticles (d=250 nm, DLS). Cryo-TEM examination of nanoparticles revealed their crystalline nature with wafer-like shapes and hexagonally arranged cages. Nanoparticulate CBC-11 traps anticancer drugs irinotecan and doxorubicin, with each cage binding up to four drug molecules in a non-cooperative manner. The inclusion complexation resulted in nanoparticles growing in size and precipitating. In media containing mammalian cells (HCT 116, human colon carcinoma), the IC50 value of CBC-11 was above 100 μM. While this work presents the first example of a large covalent organic cage operating in water at the physiological pH and forming crystalline nanoparticles, it also demonstrates its biocompatibility and potential to act as a polyvalent binder of drugs for their sequestration or delivery.
Original language | English (US) |
---|---|
Article number | e202306722 |
Journal | Angewandte Chemie - International Edition |
Volume | 62 |
Issue number | 33 |
DOIs | |
State | Published - Aug 14 2023 |
Externally published | Yes |
Keywords
- Anticancer Drugs
- Covalent Organic Cages
- Drug Delivery
- Host-Guest Chemistry
- Sequestration
ASJC Scopus subject areas
- General Chemistry
- Catalysis