TY - JOUR
T1 - Cortical column and whole-brain imaging with molecular contrast and nanoscale resolution
AU - Gao, Ruixuan
AU - Asano, Shoh M.
AU - Upadhyayula, Srigokul
AU - Pisarev, Igor
AU - Milkie, Daniel E.
AU - Liu, Tsung Li
AU - Singh, Ved
AU - Graves, Austin
AU - Huynh, Grace H.
AU - Zhao, Yongxin
AU - Bogovic, John
AU - Colonell, Jennifer
AU - Ott, Carolyn M.
AU - Zugates, Christopher
AU - Tappan, Susan
AU - Rodriguez, Alfredo
AU - Mosaliganti, Kishore R.
AU - Sheu, Shu Hsien
AU - Pasolli, H. Amalia
AU - Pang, Song
AU - Xu, C. Shan
AU - Megason, Sean G.
AU - Hess, Harald
AU - Lippincott-Schwartz, Jennifer
AU - Hantman, Adam
AU - Rubin, Gerald M.
AU - Kirchhausen, Tom
AU - Saalfeld, Stephan
AU - Aso, Yoshinori
AU - Boyden, Edward S.
AU - Betzig, Eric
N1 - Publisher Copyright:
© 2019 American Association for the Advancement of Science. All Rights Reserved.
PY - 2019/1/18
Y1 - 2019/1/18
N2 - Optical and electron microscopy have made tremendous inroads toward understanding the complexity of the brain. However, optical microscopy offers insufficient resolution to reveal subcellular details, and electron microscopy lacks the throughput and molecular contrast to visualize specific molecular constituents over millimeter-scale or larger dimensions. We combined expansion microscopy and lattice light-sheet microscopy to image the nanoscale spatial relationships between proteins across the thickness of the mouse cortex or the entire Drosophila brain. These included synaptic proteins at dendritic spines, myelination along axons, and presynaptic densities at dopaminergic neurons in every fly brain region. The technology should enable statistically rich, large-scale studies of neural development, sexual dimorphism, degree of stereotypy, and structural correlations to behavior or neural activity, all with molecular contrast.
AB - Optical and electron microscopy have made tremendous inroads toward understanding the complexity of the brain. However, optical microscopy offers insufficient resolution to reveal subcellular details, and electron microscopy lacks the throughput and molecular contrast to visualize specific molecular constituents over millimeter-scale or larger dimensions. We combined expansion microscopy and lattice light-sheet microscopy to image the nanoscale spatial relationships between proteins across the thickness of the mouse cortex or the entire Drosophila brain. These included synaptic proteins at dendritic spines, myelination along axons, and presynaptic densities at dopaminergic neurons in every fly brain region. The technology should enable statistically rich, large-scale studies of neural development, sexual dimorphism, degree of stereotypy, and structural correlations to behavior or neural activity, all with molecular contrast.
UR - http://www.scopus.com/inward/record.url?scp=85060183755&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85060183755&partnerID=8YFLogxK
U2 - 10.1126/science.aau8302
DO - 10.1126/science.aau8302
M3 - Article
C2 - 30655415
AN - SCOPUS:85060183755
SN - 0036-8075
VL - 363
JO - Science
JF - Science
IS - 6424
M1 - eaau8302
ER -