TY - JOUR
T1 - Corrective saccades in acute vestibular neuritis
T2 - studying the role of prediction with automated passively induced head impulses
AU - Kerkeni, Hassen
AU - Zee, David S.
AU - Korda, Athanasia
AU - Morrison, Miranda
AU - Mantokoudis, Georgios
AU - Ramat, Stefano
PY - 2023/2/1
Y1 - 2023/2/1
N2 - When the demands for visual stabilization during head rotations overwhelm the ability of the vestibuloocular reflex (VOR) to produce compensatory eye movements, the brain produces corrective saccades that bring gaze toward the fixation target, even without visual cues (covert saccades). What triggers covert saccades and what might be the role of prediction in their generation are unknown. We studied 14 subjects with acute vestibular neuritis. To minimize variability of the stimulus, head impulses were imposed with a motorized torque generator with the subject on a bite bar. Predictable and unpredictable (timing, amplitude, direction) stimuli were compared. Distributions of covert corrective saccade latencies were analyzed with a "LATER" (linear approach to threshold with ergodic rate) approach. On the affected side, VOR gain was higher (0.47 ± 0.28 vs. 0.39 ± 0.22, P ≪ 0.001) with predictable than unpredictable head impulses, and gaze error at the end of the head movement was less (5.4 ± 3.3° vs. 6.9 ± 3.3°, P ≪ 0.001). Analyzing trials with covert saccades, gaze error at saccade end was significantly less with predictable than unpredictable head impulses (4.2 ± 2.8° vs. 5.5 ± 3.2°, P ≪ 0.001). Furthermore, covert corrective saccades occurred earlier with predictable than unpredictable head impulses (140 ± 37 vs. 153 ± 37 ms, P ≪ 0.001). Using a LATER analysis with reciprobit plots, we were able to divide covert corrective saccades into two classes, early and late, with a break point in the range of 88-98 ms. We hypothesized two rise-to-threshold decision mechanisms for triggering early and late covert corrective saccades, with the first being most engaged when stimuli are predictable.NEW & NOTEWORTHY We successfully used a LATER (linear approach to threshold with ergodic rate) analysis of the latencies of corrective saccades in patients with acute vestibular neuritis. We found two types of covert saccades: early (<90 ms) and late (>90 ms) covert saccades. Predictability led to an increase in VOR gain and a decrease in saccade latency.
AB - When the demands for visual stabilization during head rotations overwhelm the ability of the vestibuloocular reflex (VOR) to produce compensatory eye movements, the brain produces corrective saccades that bring gaze toward the fixation target, even without visual cues (covert saccades). What triggers covert saccades and what might be the role of prediction in their generation are unknown. We studied 14 subjects with acute vestibular neuritis. To minimize variability of the stimulus, head impulses were imposed with a motorized torque generator with the subject on a bite bar. Predictable and unpredictable (timing, amplitude, direction) stimuli were compared. Distributions of covert corrective saccade latencies were analyzed with a "LATER" (linear approach to threshold with ergodic rate) approach. On the affected side, VOR gain was higher (0.47 ± 0.28 vs. 0.39 ± 0.22, P ≪ 0.001) with predictable than unpredictable head impulses, and gaze error at the end of the head movement was less (5.4 ± 3.3° vs. 6.9 ± 3.3°, P ≪ 0.001). Analyzing trials with covert saccades, gaze error at saccade end was significantly less with predictable than unpredictable head impulses (4.2 ± 2.8° vs. 5.5 ± 3.2°, P ≪ 0.001). Furthermore, covert corrective saccades occurred earlier with predictable than unpredictable head impulses (140 ± 37 vs. 153 ± 37 ms, P ≪ 0.001). Using a LATER analysis with reciprobit plots, we were able to divide covert corrective saccades into two classes, early and late, with a break point in the range of 88-98 ms. We hypothesized two rise-to-threshold decision mechanisms for triggering early and late covert corrective saccades, with the first being most engaged when stimuli are predictable.NEW & NOTEWORTHY We successfully used a LATER (linear approach to threshold with ergodic rate) analysis of the latencies of corrective saccades in patients with acute vestibular neuritis. We found two types of covert saccades: early (<90 ms) and late (>90 ms) covert saccades. Predictability led to an increase in VOR gain and a decrease in saccade latency.
KW - LATER analysis
KW - acute vestibular neuritis
KW - head impulse
KW - prediction
KW - saccades
UR - http://www.scopus.com/inward/record.url?scp=85147892859&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85147892859&partnerID=8YFLogxK
U2 - 10.1152/jn.00382.2022
DO - 10.1152/jn.00382.2022
M3 - Article
C2 - 36651642
AN - SCOPUS:85147892859
SN - 0022-3077
VL - 129
SP - 445
EP - 454
JO - Journal of neurophysiology
JF - Journal of neurophysiology
IS - 2
ER -