Core-modified porphyrins. Part 6: Effects of lipophilicity and core structures on physicochemical and biological properties in vitro

Ethel J. Ngen, Thalia S. Daniels, Rajesh S. Murthy, Michael R. Detty, Youngjae You

Research output: Contribution to journalArticlepeer-review

13 Scopus citations


Thiaporphyrins 2-8 were prepared as analogues of 5,20-diphenyl-10,15-bis[4-(carboxymethyleneoxy)-phenyl]-21,23- dithiaporphyrin (1) to examine the effect of structural modifications: substituent changes in meso aryl groups of dithiaporphyrins with one water-solubilizing group (2-5), dihydroxylation of a pyrrole double bond and reduction to dihydroxychlorins (6 and 7), and the removal of two meso aryl groups to give unsubstituted meso positions (8). The impact of these structural modifications was measured in both physicochemical (UV spectra, generation of singlet oxygen, lipophilicity, and aggregate formation) and biological properties (dark toxicity and phototoxicity, cellular uptake, and subcellular localization). Mono-functionalized porphyrins had much higher lipophilicity than di-functionalized porphyrin 1 and, consequently, formed more aggregates in aqueous media. The formation of aggregates might lower the efficiency of lipophilic porphyrins as photosensitizers. Interestingly, dihydroxylation of a core pyrrole group in the dithiaporphyrin core did not affect either the absorption spectrum or the efficiency for generating singlet oxygen. The phototoxicity of dihydroxydithiachlorins mainly depended on their intracellular uptake. The potent phototoxicity of 6, IC50 = 0.18 μM, was attributed to the extraordinarily high uptake. The intracellular uptake of 6 was about 7.6 times higher than 1. In contrast, thiaporphyrin 8 with only two meso aryl groups was less effective as a photosensitizer, perhaps due to poorer uptake and a lower quantum yield for the generation of singlet oxygen.

Original languageEnglish (US)
Pages (from-to)3171-3183
Number of pages13
JournalBioorganic and Medicinal Chemistry
Issue number6
StatePublished - Mar 15 2008
Externally publishedYes


  • Anticancer therapy
  • Core-modified porphyrin
  • Photodynamic therapy
  • SAR
  • Thiaporphyrin

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Medicine
  • Molecular Biology
  • Pharmaceutical Science
  • Drug Discovery
  • Clinical Biochemistry
  • Organic Chemistry


Dive into the research topics of 'Core-modified porphyrins. Part 6: Effects of lipophilicity and core structures on physicochemical and biological properties in vitro'. Together they form a unique fingerprint.

Cite this