TY - JOUR
T1 - Coordinate regulation of GATA-3 and Th2 cytokine gene expression by the RNA-binding protein HuR
AU - Stellato, Cristiana
AU - Gubin, Matthew M.
AU - Magee, Joseph D.
AU - Fang, Xi
AU - Fan, Jinshui
AU - Tartar, Danielle M.
AU - Chen, Jing
AU - Dahm, Garrett M.
AU - Calaluce, Robert
AU - Mori, Francesca
AU - Jackson, Glenn A.
AU - Casolaro, Vincenzo
AU - Franklin, Craig L.
AU - Atasoy, Ulus
PY - 2011/7/1
Y1 - 2011/7/1
N2 - The posttranscriptional mechanisms whereby RNA-binding proteins (RBPs) regulate T cell differentiation remain unclear. RBPs can coordinately regulate the expression of functionally related genes via binding to shared regulatory sequences, such as the adenylate-uridylate-rich elements (AREs) present in the 3′ untranslated region (UTR) of mRNA. The RBP HuR posttranscriptionally regulates IL-4, IL-13, and other Th2 cell-restricted transcripts. We hypothesized that the ARE-bearing GATA-3 gene, a critical regulator of Th2 polarization, is under HuR control as part of its coordinate posttranscriptional regulation of the Th2 program. We report that in parallel with stimulus-induced increase in GATA-3 mRNA and protein levels, GATA-3 mRNA half-life is increased after restimulation in the human T cell line Jurkat, in human memory and Th2 cells, and in murine Th2-skewed cells. We demonstrate by immunoprecipitation of ribonucleoprotein complexes that HuR associates with the GATA-3 endogenous transcript in human T cells and found, using biotin pulldown assay, that HuR specifically interacts with its 39UTR. Using both loss-of-function and gain-of-function approaches in vitro and in animal models, we show that HuR is a critical mediator of stimulus-induced increase in GATA-3 mRNA and protein expression and that it positively influences GATA-3 mRNA turnover, in parallel with selective promotion of Th2 cytokine overexpression. These results suggest that HuR-driven posttranscriptional control plays a significant role in T cell development and effector function in both murine and human systems. A better understanding of HuR-mediated control of Th2 polarization may have utility in altering allergic airway inflammation in human asthmatic patients.
AB - The posttranscriptional mechanisms whereby RNA-binding proteins (RBPs) regulate T cell differentiation remain unclear. RBPs can coordinately regulate the expression of functionally related genes via binding to shared regulatory sequences, such as the adenylate-uridylate-rich elements (AREs) present in the 3′ untranslated region (UTR) of mRNA. The RBP HuR posttranscriptionally regulates IL-4, IL-13, and other Th2 cell-restricted transcripts. We hypothesized that the ARE-bearing GATA-3 gene, a critical regulator of Th2 polarization, is under HuR control as part of its coordinate posttranscriptional regulation of the Th2 program. We report that in parallel with stimulus-induced increase in GATA-3 mRNA and protein levels, GATA-3 mRNA half-life is increased after restimulation in the human T cell line Jurkat, in human memory and Th2 cells, and in murine Th2-skewed cells. We demonstrate by immunoprecipitation of ribonucleoprotein complexes that HuR associates with the GATA-3 endogenous transcript in human T cells and found, using biotin pulldown assay, that HuR specifically interacts with its 39UTR. Using both loss-of-function and gain-of-function approaches in vitro and in animal models, we show that HuR is a critical mediator of stimulus-induced increase in GATA-3 mRNA and protein expression and that it positively influences GATA-3 mRNA turnover, in parallel with selective promotion of Th2 cytokine overexpression. These results suggest that HuR-driven posttranscriptional control plays a significant role in T cell development and effector function in both murine and human systems. A better understanding of HuR-mediated control of Th2 polarization may have utility in altering allergic airway inflammation in human asthmatic patients.
UR - http://www.scopus.com/inward/record.url?scp=79960424324&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=79960424324&partnerID=8YFLogxK
U2 - 10.4049/jimmunol.1001881
DO - 10.4049/jimmunol.1001881
M3 - Article
C2 - 21613615
AN - SCOPUS:79960424324
SN - 0022-1767
VL - 187
SP - 441
EP - 449
JO - Journal of Immunology
JF - Journal of Immunology
IS - 1
ER -