Abstract
The goal of this work was to assess the feasibility of using affinity-based delivery systems to release neurotrophin-3 (NT-3) in a controlled manner from fibrin gels as a therapy for spinal cord injury. A heparin-based delivery system (HBDS) was used to immobilize NT-3 within fibrin gels via non-covalent interactions to slow diffusion-based release of NT-3, thus allowing cell-activated degradation of fibrin to mediate release. The HBDS consists of three components: immobilized linker peptide, heparin and NT-3. The linker peptide contained a Factor XIIIa substrate and was covalently cross-linked to fibrin during polymerization. This immobilized linker peptide sequesters heparin within fibrin gels, and sequestered heparin binds NT-3, preventing its diffusion. Mathematical modeling was performed to examine the effect of heparin concentration on the fraction of NT-3 initially bound to fibrin. In vitro release studies confirmed that heparin concentration modulates diffusion-based release of NT-3. Fibrin gels containing the HBDS and NT-3 stimulated neural outgrowth from chick dorsal root ganglia by up to 54% versus unmodified fibrin, demonstrating that the NT-3 released is biologically active. In a preliminary in vivo study, fibrin gels containing the HBDS and NT-3 showed increased neural fiber density in spinal cord lesions versus unmodified fibrin at 9 days.
Original language | English (US) |
---|---|
Pages (from-to) | 281-294 |
Number of pages | 14 |
Journal | Journal of Controlled Release |
Volume | 98 |
Issue number | 2 |
DOIs | |
State | Published - Aug 11 2004 |
Keywords
- Growth factor
- Heparin
- Nerve regeneration
- Tissue engineering
ASJC Scopus subject areas
- Pharmaceutical Science