TY - JOUR
T1 - Contribution of high risk groups’ unmet needs may be underestimated in epidemic models without risk turnover
T2 - A mechanistic modelling analysis
AU - Knight, Jesse
AU - Baral, Stefan D.
AU - Schwartz, Sheree
AU - Wang, Linwei
AU - Ma, Huiting
AU - Young, Katherine
AU - Hausler, Harry
AU - Mishra, Sharmistha
N1 - Funding Information:
We would like to thank Kristy Yiu (Unity Health Toronto) for logistical support, the Siyaphambili research team for helpful discussions, and Carly Comins (Johns Hopkins University) for facilitating the modelling discussions with the wider study team. SM is supported by an Ontario HIV Treatment Network and Canadian Institutes of Health Research New Investigator Award.
Funding Information:
The study was supported by the National Institutes of Health , Grant number: NR016650 ; the Center for AIDS Research , Johns Hopkins University through the National Institutes of Health , Grant number: P30AI094189 .
Publisher Copyright:
© 2020 The Authors
PY - 2020
Y1 - 2020
N2 - Background: Epidemic models of sexually transmitted infections (STIs) are often used to characterize the contribution of risk groups to overall transmission by projecting the transmission population attributable fraction (tPAF) of unmet prevention and treatment needs within risk groups. However, evidence suggests that STI risk is dynamic over an individual's sexual life course, which manifests as turnover between risk groups. We sought to examine the mechanisms by which turnover influences modelled projections of the tPAF of high risk groups. Methods: We developed a unifying, data-guided framework to simulate risk group turnover in deterministic, compartmental transmission models. We applied the framework to an illustrative model of an STI and examined the mechanisms by which risk group turnover influenced equilibrium prevalence across risk groups. We then fit a model with and without turnover to the same risk-stratified STI prevalence targets and compared the inferred level of risk heterogeneity and tPAF of the highest risk group projected by the two models. Results: The influence of turnover on group-specific prevalence was mediated by three main phenomena: movement of previously high risk individuals with the infection into lower risk groups; changes to herd effect in the highest risk group; and changes in the number of partnerships where transmission can occur. Faster turnover led to a smaller ratio of STI prevalence between the highest and lowest risk groups. Compared to the fitted model without turnover, the fitted model with turnover inferred greater risk heterogeneity and consistently projected a larger tPAF of the highest risk group over time. Implications: If turnover is not captured in epidemic models, the projected contribution of high risk groups, and thus, the potential impact of prioritizing interventions to address their needs, could be underestimated. To aid the next generation of tPAF models, data collection efforts to parameterize risk group turnover should be prioritized.
AB - Background: Epidemic models of sexually transmitted infections (STIs) are often used to characterize the contribution of risk groups to overall transmission by projecting the transmission population attributable fraction (tPAF) of unmet prevention and treatment needs within risk groups. However, evidence suggests that STI risk is dynamic over an individual's sexual life course, which manifests as turnover between risk groups. We sought to examine the mechanisms by which turnover influences modelled projections of the tPAF of high risk groups. Methods: We developed a unifying, data-guided framework to simulate risk group turnover in deterministic, compartmental transmission models. We applied the framework to an illustrative model of an STI and examined the mechanisms by which risk group turnover influenced equilibrium prevalence across risk groups. We then fit a model with and without turnover to the same risk-stratified STI prevalence targets and compared the inferred level of risk heterogeneity and tPAF of the highest risk group projected by the two models. Results: The influence of turnover on group-specific prevalence was mediated by three main phenomena: movement of previously high risk individuals with the infection into lower risk groups; changes to herd effect in the highest risk group; and changes in the number of partnerships where transmission can occur. Faster turnover led to a smaller ratio of STI prevalence between the highest and lowest risk groups. Compared to the fitted model without turnover, the fitted model with turnover inferred greater risk heterogeneity and consistently projected a larger tPAF of the highest risk group over time. Implications: If turnover is not captured in epidemic models, the projected contribution of high risk groups, and thus, the potential impact of prioritizing interventions to address their needs, could be underestimated. To aid the next generation of tPAF models, data collection efforts to parameterize risk group turnover should be prioritized.
KW - Mathematical modelling
KW - Population attributable fraction
KW - Risk heterogeneity
KW - Sexually transmitted infection
KW - Transmission
KW - Turnover
UR - http://www.scopus.com/inward/record.url?scp=85089517273&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85089517273&partnerID=8YFLogxK
U2 - 10.1016/j.idm.2020.07.004
DO - 10.1016/j.idm.2020.07.004
M3 - Article
C2 - 32913937
AN - SCOPUS:85089517273
SN - 2468-2152
VL - 5
SP - 549
EP - 562
JO - Infectious Disease Modelling
JF - Infectious Disease Modelling
ER -