Context-dependent hyperactivity in syngap1a and syngap1b zebrafish models of SYNGAP1-related disorder

Sureni H. Sumathipala, Suha Khan, Robert A. Kozol, Yoichi Araki, Sheyum Syed, Richard L. Huganir, Julia E. Dallman

Research output: Contribution to journalArticlepeer-review

Abstract

Background and aims: SYNGAP1-related disorder (SYNGAP1-RD) is a prevalent genetic form of Autism Spectrum Disorder and Intellectual Disability (ASD/ID) and is caused by de novo or inherited mutations in one copy of the SYNGAP1 gene. In addition to ASD/ID, SYNGAP1 disorder is associated with comorbid symptoms including treatment-resistant-epilepsy, sleep disturbances, and gastrointestinal distress. Mechanistic links between these diverse symptoms and SYNGAP1 variants remain obscure, therefore, our goal was to generate a zebrafish model in which this range of symptoms can be studied. Methods: We used CRISPR/Cas9 to introduce frameshift mutations in the syngap1a and syngap1b zebrafish duplicates (syngap1ab) and validated these stable models for Syngap1 loss-of-function. Because SYNGAP1 is extensively spliced, we mapped splice variants to the two zebrafish syngap1a and b genes and identified mammalian-like isoforms. We then quantified locomotory behaviors in zebrafish syngap1ab larvae under three conditions that normally evoke different arousal states in wild-type larvae: aversive, high-arousal acoustic, medium-arousal dark, and low-arousal light stimuli. Results: We show that CRISPR/Cas9 indels in zebrafish syngap1a and syngap1b produced loss-of-function alleles at RNA and protein levels. Our analyses of zebrafish Syngap1 isoforms showed that, as in mammals, zebrafish Syngap1 N- and C-termini are extensively spliced. We identified a zebrafish syngap1 α1-like variant that maps exclusively to the syngap1b gene. Quantifying locomotor behaviors showed that syngap1ab mutant larvae are hyperactive compared to wild-type but to differing degrees depending on the stimulus. Hyperactivity was most pronounced in low arousal settings, and hyperactivity was proportional to the number of mutant syngap1 alleles. Limitations: Syngap1 loss-of-function mutations produce relatively subtle phenotypes in zebrafish compared to mammals. For example, while mouse Syngap1 homozygotes die at birth, zebrafish syngap1ab−/− survive to adulthood and are fertile, thus some aspects of symptoms in people with SYNGAP1-Related Disorder are not likely to be reflected in zebrafish. Conclusion: Our data support mutations in zebrafish syngap1ab as causal for hyperactivity associated with elevated arousal that is especially pronounced in low-arousal environments.

Original languageEnglish (US)
Article number1401746
JournalFrontiers in Molecular Neuroscience
Volume17
DOIs
StatePublished - 2024

Keywords

  • autism
  • haploinsufficiency mutant profiling
  • sensory-processing
  • syngap1
  • zebrafish

ASJC Scopus subject areas

  • Molecular Biology
  • Cellular and Molecular Neuroscience

Fingerprint

Dive into the research topics of 'Context-dependent hyperactivity in syngap1a and syngap1b zebrafish models of SYNGAP1-related disorder'. Together they form a unique fingerprint.

Cite this