Conserved structure and inferred evolutionary history of long terminal repeats (LTRs)

Farid Benachenhou, Göran O. Sperber, Erik Bongcam-Rudloff, Göran Andersson, Jef D. Boeke, Jonas Blomberg

Research output: Contribution to journalReview articlepeer-review

20 Scopus citations

Abstract

Background: Long terminal repeats (LTRs, consisting of U3-R-U5 portions) are important elements of retroviruses and related retrotransposons. They are difficult to analyse due to their variability.The aim was to obtain a more comprehensive view of structure, diversity and phylogeny of LTRs than hitherto possible. Results: Hidden Markov models (HMM) were created for 11 clades of LTRs belonging to Retroviridae (class III retroviruses), animal Metaviridae (Gypsy/Ty3) elements and plant Pseudoviridae (Copia/Ty1) elements, complementing our work with Orthoretrovirus HMMs. The great variation in LTR length of plant Metaviridae and the few divergent animal Pseudoviridae prevented building HMMs from both of these groups.Animal Metaviridae LTRs had the same conserved motifs as retroviral LTRs, confirming that the two groups are closely related. The conserved motifs were the short inverted repeats (SIRs), integrase recognition signals (5TGTTRNRYNYAACA 3); the polyadenylation signal or AATAAA motif; a GT-rich stretch downstream of the polyadenylation signal; and a less conserved AT-rich stretch corresponding to the core promoter element, the TATA box. Plant Pseudoviridae LTRs differed slightly in having a conserved TATA-box, TATATA, but no conserved polyadenylation signal, plus a much shorter R region.The sensitivity of the HMMs for detection in genomic sequences was around 50% for most models, at a relatively high specificity, suitable for genome screening.The HMMs yielded consensus sequences, which were aligned by creating an HMM model (a Superviterbi alignment). This yielded a phylogenetic tree that was compared with a Pol-based tree. Both LTR and Pol trees supported monophyly of retroviruses. In both, Pseudoviridae was ancestral to all other LTR retrotransposons. However, the LTR trees showed the chromovirus portion of Metaviridae clustering together with Pseudoviridae, dividing Metaviridae into two portions with distinct phylogeny. Conclusion: The HMMs clearly demonstrated a unitary conserved structure of LTRs, supporting that they arose once during evolution. We attempted to follow the evolution of LTRs by tracing their functional foundations, that is, acquisition of RNAse H, a combined promoter/ polyadenylation site, integrase, hairpin priming and the primer binding site (PBS). Available information did not support a simple evolutionary chain of events.

Original languageEnglish (US)
Article number5
JournalMobile DNA
Volume4
Issue number1
DOIs
StatePublished - 2013

Keywords

  • Genome evolution
  • LTR
  • Long terminal repeat
  • Phylogeny
  • Retrotransposon
  • Retrovirus

ASJC Scopus subject areas

  • Molecular Biology

Fingerprint

Dive into the research topics of 'Conserved structure and inferred evolutionary history of long terminal repeats (LTRs)'. Together they form a unique fingerprint.

Cite this