TY - JOUR
T1 - Concurrent temozolomide and dose-escalated intensity-modulated radiation therapy in newly diagnosed glioblastoma
AU - Tsien, Christina I.
AU - Brown, Doris
AU - Normolle, Daniel
AU - Schipper, Matthew
AU - Piert, Morand
AU - Junck, Larry
AU - Heth, Jason
AU - Gomez-Hassan, Diana
AU - Ten Haken, Randall K.
AU - Chenevert, Thomas
AU - Cao, Yue
AU - Lawrence, Theodore
PY - 2012/1/1
Y1 - 2012/1/1
N2 - Purpose: To determine the maximum-tolerated dose (MTD) of radiation (RT) with concurrent temozolomide in patients with newly diagnosed glioblastoma (GBM), to estimate their progression-free (PFS) and overall survival (OS), and to assess the role of 11C methionine PET (MET-PET) imaging in predicting recurrence. Experimental Design: Intensity-modulated RT (IMRT) doses of 66 to 81 Gy, assigned to patients by the time-to-event continual reassessment method, were delivered over 6 weeks with concurrent daily temozolomide (75 mg/m2) followed by adjuvant cyclic temozolomide (200 mg/m2 d1-5 q28d ×6 cycles). Treatment was based on gadolinium-enhanced MRI. Pretreatment MET-PET scans were obtained for correlation with eventual sites of failure. Results: A total of 38 patients were analyzed with a median follow-up of 54 months for patients who remain alive. Late CNS grade ≥III toxicity was observed at 78 (2 of 7 patients) and 81 Gy (1 of 9 patients). None of 22 patients receiving 75 or less Gy developed RT necrosis. Median OS and PFS were 20.1 (14.0-32.5) and 9.0 (6.0-11.7) months, respectively. Twenty-two of 32 patients with pretreatment MET-PET uptake showed uptake beyond the contrast-enhanced MRI. Patients whose treatment did not include the region of increased MET-PET uptake showed an increased risk of noncentral failure (P < 0.001). Conclusions: Patients with GBM can safely receive standard temozolomide with 75 Gy in 30 fractions, delivered using IMRT. The median OS of 20.1 months is promising. Furthermore, MET-PET appears to predict regions of high risk of recurrence not defined by MRI, suggesting that further improvements may be possible by targeting metabolically active regions.
AB - Purpose: To determine the maximum-tolerated dose (MTD) of radiation (RT) with concurrent temozolomide in patients with newly diagnosed glioblastoma (GBM), to estimate their progression-free (PFS) and overall survival (OS), and to assess the role of 11C methionine PET (MET-PET) imaging in predicting recurrence. Experimental Design: Intensity-modulated RT (IMRT) doses of 66 to 81 Gy, assigned to patients by the time-to-event continual reassessment method, were delivered over 6 weeks with concurrent daily temozolomide (75 mg/m2) followed by adjuvant cyclic temozolomide (200 mg/m2 d1-5 q28d ×6 cycles). Treatment was based on gadolinium-enhanced MRI. Pretreatment MET-PET scans were obtained for correlation with eventual sites of failure. Results: A total of 38 patients were analyzed with a median follow-up of 54 months for patients who remain alive. Late CNS grade ≥III toxicity was observed at 78 (2 of 7 patients) and 81 Gy (1 of 9 patients). None of 22 patients receiving 75 or less Gy developed RT necrosis. Median OS and PFS were 20.1 (14.0-32.5) and 9.0 (6.0-11.7) months, respectively. Twenty-two of 32 patients with pretreatment MET-PET uptake showed uptake beyond the contrast-enhanced MRI. Patients whose treatment did not include the region of increased MET-PET uptake showed an increased risk of noncentral failure (P < 0.001). Conclusions: Patients with GBM can safely receive standard temozolomide with 75 Gy in 30 fractions, delivered using IMRT. The median OS of 20.1 months is promising. Furthermore, MET-PET appears to predict regions of high risk of recurrence not defined by MRI, suggesting that further improvements may be possible by targeting metabolically active regions.
UR - http://www.scopus.com/inward/record.url?scp=84855449737&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84855449737&partnerID=8YFLogxK
U2 - 10.1158/1078-0432.CCR-11-2073
DO - 10.1158/1078-0432.CCR-11-2073
M3 - Article
C2 - 22065084
AN - SCOPUS:84855449737
SN - 1078-0432
VL - 18
SP - 273
EP - 279
JO - Clinical Cancer Research
JF - Clinical Cancer Research
IS - 1
ER -