Abstract
Patient-specific human-induced pluripotent stem cells (hiPSCs) hold great promise for the modelling of genetic disorders. However, these cells display wide intra- and interindividual variations in gene expression, which makes distinguishing true-positive and false-positive phenotypes challenging. Data from hiPSC phenotypes and human embryonic stem cells (hESCs) harbouring the same disease mutation are also lacking. Here, we report a comparison of the molecular, cellular and functional characteristics of three congruent patient-specific cell types—hiPSCs, hESCs and direct-lineage-converted cells—derived from currently available differentiation and direct-reprogramming technologies for use in the modelling of Charcot−Marie−Tooth 1A, a human genetic Schwann-cell disorder featuring a 1.4 Mb chromosomal duplication. We find that the chemokines C−X−C motif ligand chemokine-1 (CXCL1) and macrophage chemoattractant protein-1 (MCP1) are commonly upregulated in all three congruent models and in clinical patient samples. The development of congruent models of a single genetic disease using somatic cells from a common patient will facilitate the search for convergent phenotypes.
Original language | English (US) |
---|---|
Pages (from-to) | 571-582 |
Number of pages | 12 |
Journal | Nature biomedical engineering |
Volume | 3 |
Issue number | 7 |
DOIs | |
State | Published - Jul 1 2019 |
ASJC Scopus subject areas
- Biotechnology
- Bioengineering
- Medicine (miscellaneous)
- Biomedical Engineering
- Computer Science Applications