TY - JOUR
T1 - Comparison of human bone marrow mononuclear cell isolation methods for creating tissue-engineered vascular grafts
T2 - Novel filter system versus traditional density centrifugation method
AU - Hibino, Narutoshi
AU - Nalbandian, Ani
AU - Devine, Lesley
AU - Martinez, Rajendra Sawh
AU - McGillicuddy, Edward
AU - Yi, Tai
AU - Karandish, Safa
AU - Ortolano, Girolamo A.
AU - Shin'Oka, Toshiharu
AU - Snyder, Edward
AU - Breuer, Christopher K.
PY - 2011/10/1
Y1 - 2011/10/1
N2 - Introduction: We created the first tissue-engineered vascular graft (TEVG) to be successfully used in humans. The TEVG is made by seeding autologous bone marrow-derived mononuclear cells (BM-MNCs) onto a biodegradable tubular scaffold fabricated from polyglycolic-acid mesh coated with a 50:50 copolymer of poly-L-lactide and-ε-caprolactone. In the initial clinical study, the BM-MNCs were isolated using a Ficoll density centrifugation method. Use of this cell isolation technique is problematic in that it is performed using an open system and therefore is susceptible to contamination. As a first step toward creating a closed system for assembling a TEVG, we evaluated the use of a filter-based method for isolating BM-MNCs and compared it to density centrifugation in Ficoll. Methods: BM-MNCs were isolated from human BM using density centrifugation in Ficoll or a filter-based method. BM-MNCs were seeded onto biodegradable tubular scaffold and incubated for 24h before implantation. The TEVG were implanted as inferior vena cava interposition grafts in SCID/bg mice (n=24) using microsurgical technique. Grafts were followed with ultrasonography and computed tomography-angiography. Ten weeks after implantation the TEVG were explanted and examined using histology and immunohistochemistry. Results: Both methods isolated similar number of cells (Ficoll: 8.5±6.6×106/mL, Filter: 6.6±3. 5×106/mL; p=0.686) with similar viability as assayed using fluorescence-activated cell sorting (FACS) (Ficoll: 97.0%±1.5%, Filter: 95.9%±3.0%; p=0.339). FACS analysis demonstrated that the fraction of lymphocytes and monocytes to total cells was lower in the filter group (CD4 in Ficoll: 8.9%±1.1%, CD4 in Filter: 3.5%±0.8%; p=0.002, CD8 in Ficoll: 9.4%±2.1%, CD8 in Filter: 3.9%±1.4%; p=0.021, Monocyte in Ficoll: 6.9%±1.0%, Monocyte in Filter: 2.7%±1.0%; p=0.008), consistent with granulocyte contamination (Ficoll: 46.6±2.7×10 6/mL, Filter: 58.1±5.2×106/mL; p<0.001). The ratio of stem cells to BM-MNCs was comparable between groups. There were no statistically significant differences with regard to TEVG patency and morphology between groups. Both methods of cell isolation produced neovessels with similar histology. Conclusion: Filter-based BM-MNC isolation is comparable to BM-MNC isolation using density centrifugation in Ficoll for TEVG assembly. The filter-based cell isolation technique has the added advantage of the potential to create a closed disposable system.
AB - Introduction: We created the first tissue-engineered vascular graft (TEVG) to be successfully used in humans. The TEVG is made by seeding autologous bone marrow-derived mononuclear cells (BM-MNCs) onto a biodegradable tubular scaffold fabricated from polyglycolic-acid mesh coated with a 50:50 copolymer of poly-L-lactide and-ε-caprolactone. In the initial clinical study, the BM-MNCs were isolated using a Ficoll density centrifugation method. Use of this cell isolation technique is problematic in that it is performed using an open system and therefore is susceptible to contamination. As a first step toward creating a closed system for assembling a TEVG, we evaluated the use of a filter-based method for isolating BM-MNCs and compared it to density centrifugation in Ficoll. Methods: BM-MNCs were isolated from human BM using density centrifugation in Ficoll or a filter-based method. BM-MNCs were seeded onto biodegradable tubular scaffold and incubated for 24h before implantation. The TEVG were implanted as inferior vena cava interposition grafts in SCID/bg mice (n=24) using microsurgical technique. Grafts were followed with ultrasonography and computed tomography-angiography. Ten weeks after implantation the TEVG were explanted and examined using histology and immunohistochemistry. Results: Both methods isolated similar number of cells (Ficoll: 8.5±6.6×106/mL, Filter: 6.6±3. 5×106/mL; p=0.686) with similar viability as assayed using fluorescence-activated cell sorting (FACS) (Ficoll: 97.0%±1.5%, Filter: 95.9%±3.0%; p=0.339). FACS analysis demonstrated that the fraction of lymphocytes and monocytes to total cells was lower in the filter group (CD4 in Ficoll: 8.9%±1.1%, CD4 in Filter: 3.5%±0.8%; p=0.002, CD8 in Ficoll: 9.4%±2.1%, CD8 in Filter: 3.9%±1.4%; p=0.021, Monocyte in Ficoll: 6.9%±1.0%, Monocyte in Filter: 2.7%±1.0%; p=0.008), consistent with granulocyte contamination (Ficoll: 46.6±2.7×10 6/mL, Filter: 58.1±5.2×106/mL; p<0.001). The ratio of stem cells to BM-MNCs was comparable between groups. There were no statistically significant differences with regard to TEVG patency and morphology between groups. Both methods of cell isolation produced neovessels with similar histology. Conclusion: Filter-based BM-MNC isolation is comparable to BM-MNC isolation using density centrifugation in Ficoll for TEVG assembly. The filter-based cell isolation technique has the added advantage of the potential to create a closed disposable system.
UR - http://www.scopus.com/inward/record.url?scp=80053325434&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=80053325434&partnerID=8YFLogxK
U2 - 10.1089/ten.tec.2011.0110
DO - 10.1089/ten.tec.2011.0110
M3 - Article
C2 - 21609305
AN - SCOPUS:80053325434
VL - 17
SP - 993
EP - 998
JO - Tissue Engineering - Part C: Methods
JF - Tissue Engineering - Part C: Methods
SN - 1937-3384
IS - 10
ER -