Comparison of deep learning and human observer performance for lesion detection and characterization

Ruben De Man, Grace J. Gang, Xin Li, Ge Wang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

The detection and characterizations of abnormalities in clinical imaging is of the utmost importance for patient diagnosis and treatment. In this paper, we present a comparison of convolutional neural network (CNN) and human observer performance on a simulated lesion detection and characterization task. We apply both conventional performance metrics including accuracy and non-conventional metrics such as lift charts to perform qualitative and quantitative comparison of each type of observer. It is determined that the CNN generally outperforms the human observers, particularly at high noise levels. However, high noise correlation reduces the relative performance of the CNN, and human observer performance is comparable to CNN under these conditions. These findings extend into the field of diagnostic radiology, where the adoption of deep learning is starting to become widespread. The importance of considering the applications for which deep learning is most effective is of critical importance to this development.

Original languageEnglish (US)
Title of host publication15th International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine
EditorsSamuel Matej, Scott D. Metzler
PublisherSPIE
ISBN (Electronic)9781510628373
DOIs
StatePublished - Jan 1 2019
Externally publishedYes
Event15th International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine, Fully3D 2019 - Philadelphia, United States
Duration: Jun 2 2019Jun 6 2019

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume11072
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X

Conference

Conference15th International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine, Fully3D 2019
Country/TerritoryUnited States
CityPhiladelphia
Period6/2/196/6/19

Keywords

  • Artificial intelligence
  • Detection
  • Image analysis
  • Image quality
  • Noise

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Comparison of deep learning and human observer performance for lesion detection and characterization'. Together they form a unique fingerprint.

Cite this