TY - JOUR
T1 - Comparison of Accelerometry-Based Measures of Physical Activity
T2 - Retrospective Observational Data Analysis Study
AU - Karas, Marta
AU - Muschelli, John
AU - Leroux, Andrew
AU - Urbanek, Jacek K.
AU - Wanigatunga, Amal A.
AU - Bai, Jiawei
AU - Crainiceanu, Ciprian M.
AU - Schrack, Jennifer A.
N1 - Publisher Copyright:
©Marta Karas, John Muschelli, Andrew Leroux, Jacek K Urbanek, Amal A Wanigatunga, Jiawei Bai, Ciprian M Crainiceanu, Jennifer A Schrack.
PY - 2022/7/1
Y1 - 2022/7/1
N2 - Background: Given the evolution of processing and analysis methods for accelerometry data over the past decade, it is important to understand how newer summary measures of physical activity compare with established measures. Objective: We aimed to compare objective measures of physical activity to increase the generalizability and translation of findings of studies that use accelerometry-based data. Methods: High-resolution accelerometry data from the Baltimore Longitudinal Study on Aging were retrospectively analyzed. Data from 655 participants who used a wrist-worn ActiGraph GT9X device continuously for a week were summarized at the minute level as ActiGraph activity count, monitor-independent movement summary, Euclidean norm minus one, mean amplitude deviation, and activity intensity. We calculated these measures using open-source packages in R. Pearson correlations between activity count and each measure were quantified both marginally and conditionally on age, sex, and BMI. Each measures pair was harmonized using nonparametric regression of minute-level data. Results: Data were from a sample (N=655; male: n=298, 45.5%; female: n=357, 54.5%) with a mean age of 69.8 years (SD 14.2) and mean BMI of 27.3 kg/m2 (SD 5.0). The mean marginal participant-specific correlations between activity count and monitor-independent movement summary, Euclidean norm minus one, mean amplitude deviation, and activity were r=0.988 (SE 0.0002324), r=0.867 (SE 0.001841), r=0.913 (SE 0.00132), and r=0.970 (SE 0.0006868), respectively. After harmonization, mean absolute percentage errors of predicting total activity count from monitor-independent movement summary, Euclidean norm minus one, mean amplitude deviation, and activity intensity were 2.5, 14.3, 11.3, and 6.3, respectively. The accuracies for predicting sedentary minutes for an activity count cut-off of 1853 using monitor-independent movement summary, Euclidean norm minus one, mean amplitude deviation, and activity intensity were 0.981, 0.928, 0.904, and 0.960, respectively. An R software package called SummarizedActigraphy, with a unified interface for computation of the measures from raw accelerometry data, was developed and published. Conclusions: The findings from this comparison of accelerometry-based measures of physical activity can be used by researchers and facilitate the extension of knowledge from existing literature by demonstrating the high correlation between activity count and monitor-independent movement summary (and other measures) and by providing harmonization mapping.
AB - Background: Given the evolution of processing and analysis methods for accelerometry data over the past decade, it is important to understand how newer summary measures of physical activity compare with established measures. Objective: We aimed to compare objective measures of physical activity to increase the generalizability and translation of findings of studies that use accelerometry-based data. Methods: High-resolution accelerometry data from the Baltimore Longitudinal Study on Aging were retrospectively analyzed. Data from 655 participants who used a wrist-worn ActiGraph GT9X device continuously for a week were summarized at the minute level as ActiGraph activity count, monitor-independent movement summary, Euclidean norm minus one, mean amplitude deviation, and activity intensity. We calculated these measures using open-source packages in R. Pearson correlations between activity count and each measure were quantified both marginally and conditionally on age, sex, and BMI. Each measures pair was harmonized using nonparametric regression of minute-level data. Results: Data were from a sample (N=655; male: n=298, 45.5%; female: n=357, 54.5%) with a mean age of 69.8 years (SD 14.2) and mean BMI of 27.3 kg/m2 (SD 5.0). The mean marginal participant-specific correlations between activity count and monitor-independent movement summary, Euclidean norm minus one, mean amplitude deviation, and activity were r=0.988 (SE 0.0002324), r=0.867 (SE 0.001841), r=0.913 (SE 0.00132), and r=0.970 (SE 0.0006868), respectively. After harmonization, mean absolute percentage errors of predicting total activity count from monitor-independent movement summary, Euclidean norm minus one, mean amplitude deviation, and activity intensity were 2.5, 14.3, 11.3, and 6.3, respectively. The accuracies for predicting sedentary minutes for an activity count cut-off of 1853 using monitor-independent movement summary, Euclidean norm minus one, mean amplitude deviation, and activity intensity were 0.981, 0.928, 0.904, and 0.960, respectively. An R software package called SummarizedActigraphy, with a unified interface for computation of the measures from raw accelerometry data, was developed and published. Conclusions: The findings from this comparison of accelerometry-based measures of physical activity can be used by researchers and facilitate the extension of knowledge from existing literature by demonstrating the high correlation between activity count and monitor-independent movement summary (and other measures) and by providing harmonization mapping.
KW - MIMS
KW - accelerometry
KW - actigraphy
KW - activity counts
KW - aging
KW - digital health
KW - health monitoring
KW - health technology
KW - monitor-independent movement summary
KW - older adult population
KW - physical activity
KW - wearable computing
KW - wearable device
KW - wearable technology
UR - http://www.scopus.com/inward/record.url?scp=85135202531&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85135202531&partnerID=8YFLogxK
U2 - 10.2196/38077
DO - 10.2196/38077
M3 - Article
C2 - 35867392
AN - SCOPUS:85135202531
SN - 2291-5222
VL - 10
JO - JMIR mHealth and uHealth
JF - JMIR mHealth and uHealth
IS - 7
M1 - e38077
ER -