TY - JOUR
T1 - Combining ketamine with astrocytic inhibitor as a potential analgesic strategy for neuropathic pain. Ketamine, astrocytic inhibitor and pain
AU - Mei, Xiao Peng
AU - Wang, Wei
AU - Wang, Wen
AU - Zhu, Chao
AU - Chen, Lei
AU - Zhang, Ting
AU - Xu, Li Xian
AU - Wu, Sheng Xi
AU - Li, Yun Qing
N1 - Copyright:
Copyright 2010 Elsevier B.V., All rights reserved.
PY - 2010/9/6
Y1 - 2010/9/6
N2 - Background: Neuropathic pain is an intractable clinical problem. Intrathecal ketamine, a noncompetitive N--methyl-D-aspartate receptor (NMDAR) antagonist, is reported to be useful for treating neuropathic pain in clinic by inhibiting the activity of spinal neurons. Nevertheless, emerging studies have disclosed that spinal astrocytes played a critical role in the initiation and maintenance of neuropathic pain. However, the present clinical therapeutics is still just concerning about neuronal participation. Therefore, the present study is to validate the coadministration effects of a neuronal noncompetitive N-methyl-D-aspartate receptor (NMDAR) antagonist ketamine and astrocytic cytotoxin L-α-aminoadipate (LAA) on spinal nerve ligation (SNL)-induced neuropathic pain.Results: Intrathecal ketamine (10, 100, 1000 μg/kg) or LAA (10, 50, 100 nmol) alleviated SNL-induced mechanical allodynia in a dose-dependent manner respectively. Phosphorylated NR1 (pNR1) or glial fibrillary acidic protein (GFAP) expression was down-regulated by intrathecal ketamine (100, 1000 μg/kg) or LAA (50, 100 nmol) respectively. The combination of ketamine (100 μg/kg) with LAA (50 nmol) showed superadditive effects on neuropathic pain compared with that of intrathecal administration of either ketamine or LAA alone. Combined administration obviously relieved mechanical allodynia in a quick and stable manner. Moreover, down-regulation of pNR1 and GFAP expression were also enhanced by drugs coadministration.Conclusions: These results suggest that combining NMDAR antagonist ketamine with an astrocytic inhibitor or cytotoxin, which is suitable for clinical use once synthesized, might be a potential strategy for clinical management of neuropathic pain.
AB - Background: Neuropathic pain is an intractable clinical problem. Intrathecal ketamine, a noncompetitive N--methyl-D-aspartate receptor (NMDAR) antagonist, is reported to be useful for treating neuropathic pain in clinic by inhibiting the activity of spinal neurons. Nevertheless, emerging studies have disclosed that spinal astrocytes played a critical role in the initiation and maintenance of neuropathic pain. However, the present clinical therapeutics is still just concerning about neuronal participation. Therefore, the present study is to validate the coadministration effects of a neuronal noncompetitive N-methyl-D-aspartate receptor (NMDAR) antagonist ketamine and astrocytic cytotoxin L-α-aminoadipate (LAA) on spinal nerve ligation (SNL)-induced neuropathic pain.Results: Intrathecal ketamine (10, 100, 1000 μg/kg) or LAA (10, 50, 100 nmol) alleviated SNL-induced mechanical allodynia in a dose-dependent manner respectively. Phosphorylated NR1 (pNR1) or glial fibrillary acidic protein (GFAP) expression was down-regulated by intrathecal ketamine (100, 1000 μg/kg) or LAA (50, 100 nmol) respectively. The combination of ketamine (100 μg/kg) with LAA (50 nmol) showed superadditive effects on neuropathic pain compared with that of intrathecal administration of either ketamine or LAA alone. Combined administration obviously relieved mechanical allodynia in a quick and stable manner. Moreover, down-regulation of pNR1 and GFAP expression were also enhanced by drugs coadministration.Conclusions: These results suggest that combining NMDAR antagonist ketamine with an astrocytic inhibitor or cytotoxin, which is suitable for clinical use once synthesized, might be a potential strategy for clinical management of neuropathic pain.
UR - http://www.scopus.com/inward/record.url?scp=77956486990&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77956486990&partnerID=8YFLogxK
U2 - 10.1186/1744-8069-6-50
DO - 10.1186/1744-8069-6-50
M3 - Article
C2 - 20815929
AN - SCOPUS:77956486990
SN - 1744-8069
VL - 6
JO - Molecular Pain
JF - Molecular Pain
M1 - 50
ER -