TY - JOUR
T1 - Cloning human pyrroline-5-carboxylate reductase cDNA by complementation in Saccharomyces cerevisiae
AU - Dougherty, K. M.
AU - Brandriss, M. C.
AU - Valle, D.
N1 - Copyright:
Copyright 2004 Elsevier B.V., All rights reserved.
PY - 1992
Y1 - 1992
N2 - Pyrroline-5-carboxylate reductase (EC 1.5.1.2) catalyzes the NAD(P)H-dependent conversion of pyrroline-5-carboxylate to proline. We cloned a human pyrroline-5-carboxylate reductase cDNA by complementation of proline auxotrophy in a Saccharomyces cerevisiae mutant strain, DT1100. Using a HepG2 cDNA library in a yeast expression vector, we screened 105 transformants, two of which gained proline prototrophy. The plasmids in both contained similar 1.8-kilobase inserts, which when reintroduced into strain DT1100, conferred proline prototrophy. The pyrroline-5-carboxylate reductase activity in these prototrophs was 1-3% that of wild type yeast, in contrast to the activity in strain DT1100 which was undetectable. The 1810-base pair pyrroline-5-carboxylate reductase cDNA hybridizes to a 1.85-kilobase mRNA in samples from human cell lines and predicts a 319-amino acid, 33.4-kDa protein. The derived amino acid sequence is 32% identical with that of S. cerevisiae. By genomic DNA hybridization analysis, the human reductase appears to be encoded by a single copy gene which maps to chromosome 17.
AB - Pyrroline-5-carboxylate reductase (EC 1.5.1.2) catalyzes the NAD(P)H-dependent conversion of pyrroline-5-carboxylate to proline. We cloned a human pyrroline-5-carboxylate reductase cDNA by complementation of proline auxotrophy in a Saccharomyces cerevisiae mutant strain, DT1100. Using a HepG2 cDNA library in a yeast expression vector, we screened 105 transformants, two of which gained proline prototrophy. The plasmids in both contained similar 1.8-kilobase inserts, which when reintroduced into strain DT1100, conferred proline prototrophy. The pyrroline-5-carboxylate reductase activity in these prototrophs was 1-3% that of wild type yeast, in contrast to the activity in strain DT1100 which was undetectable. The 1810-base pair pyrroline-5-carboxylate reductase cDNA hybridizes to a 1.85-kilobase mRNA in samples from human cell lines and predicts a 319-amino acid, 33.4-kDa protein. The derived amino acid sequence is 32% identical with that of S. cerevisiae. By genomic DNA hybridization analysis, the human reductase appears to be encoded by a single copy gene which maps to chromosome 17.
UR - http://www.scopus.com/inward/record.url?scp=0026571685&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0026571685&partnerID=8YFLogxK
M3 - Article
C2 - 1730675
AN - SCOPUS:0026571685
SN - 0021-9258
VL - 267
SP - 871
EP - 875
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 2
ER -