Chronic intermittent mild whole-body hypothermia is therapeutic in a mouse model of ALS

Lee J. Martin, Mark V. Niedzwiecki, Margaret Wong

Research output: Contribution to journalArticlepeer-review

Abstract

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that causes motor neuron degeneration. There are no cures or effective treatments for ALS. Therapeutic hypothermia is effectively used clinically to mitigate mortality in patients with acute acquired brain injury and in surgical settings to minimize secondary brain injury. The efficacy of therapeutic hypothermia in chronic neurodegenerative disorders has not been examined. We tested the hypothesis that mild hypothermia/cold acclimation is therapeutic in a transgenic mouse model of ALS caused by expression of mutated human superoxide dismutase-1 gene. At presymptomatic stages of disease, body tem-peratures (oral and axial) of mutant male mice were persistently hyperthermic (38–38.5 °C) compared to littermate controls, but at end-stage disease mice were generally hypothermic (36–36.5 °C). Presymptomatic mutant mice (awake-freely moving) were acclimated to systemic mild hypothermia using an environmentally controlled chamber (12 h-on/12-off or 24 h-on/24 h-off) to lower body temperature (1–3 °C). Cooled ALS mice showed a significant delay in disease onset (103–112 days) compared to normothermia mice (80–90 days) and exhibited significant attenuation of functional decline in motor performance. Cooled mice examined at 80 days had reduced motor neuron loss, mitochondrial swelling, and spinal cord inflammation compared to non-cooled mice. Cooling at-tenuated the loss of heat-shock protein 70, mitochondrial uncoupling protein-3, and sumoylated-1 (SUMO1)-conjugated proteins in skeletal muscle and disengaged the mitochondrial permeability transition pore. Cooled ALS mice had a significant extension of lifespan (148 ± 7 days) compared to normothermic mice (135 ± 4 days). Thus, intermittent systemic mild hypothermia is therapeutic in mouse ALS with protective effects manifested within the CNS and skeletal muscle that target mito-chondria.

Original languageEnglish (US)
Article number320
Pages (from-to)1-16
Number of pages16
JournalCells
Volume10
Issue number2
DOIs
StatePublished - Feb 2021

Keywords

  • Adenine nucleotide translocase
  • Cyclophilin D
  • Mitochondrial permeability transition pore
  • Motor neuron
  • Therapeutic hypothermia

ASJC Scopus subject areas

  • General Medicine

Fingerprint

Dive into the research topics of 'Chronic intermittent mild whole-body hypothermia is therapeutic in a mouse model of ALS'. Together they form a unique fingerprint.

Cite this