TY - JOUR
T1 - Cellular calcium dynamics in lactation and breast cancer
T2 - From physiology to pathology
AU - Cross, Brandie M.
AU - Breitwieser, Gerda E.
AU - Reinhardt, Timothy A.
AU - Rao, Rajini
PY - 2014/3/15
Y1 - 2014/3/15
N2 - Breast cancer is the second leading cause of cancer mortality in women, estimated at nearly 40,000 deaths and more than 230,000 new cases diagnosed in the U.S. this year alone. One of the defining characteristics of breast cancer is the radiographic presence of microcalcifications. These palpable mineral precipitates are commonly found in the breast after formation of a tumor. Since free Ca2+ plays a crucial role as a second messenger inside cells, we hypothesize that these chelated precipitates may be a result of dysregulated Ca2+ secretion associated with tumorigenesis. Transient and sustained elevations of intracellular Ca2+ regulate cell proliferation, apoptosis and cell migration, and offer numerous therapeutic possibilities in controlling tumor growth and metastasis. During lactation, a developmentally determined program of gene expression controls the massive transcellular mobilization of Ca2+from the blood into milk by the coordinated action of calcium transporters, including pumps, channels, sensors and buffers, in a functional module that we term CALTRANS. Here we assess the evidence implicating genes that regulate free and buffered Ca2+in normal breast epithelium and cancer cells and discuss mechanisms that are likely to contribute to the pathological characteristics of breast cancer.
AB - Breast cancer is the second leading cause of cancer mortality in women, estimated at nearly 40,000 deaths and more than 230,000 new cases diagnosed in the U.S. this year alone. One of the defining characteristics of breast cancer is the radiographic presence of microcalcifications. These palpable mineral precipitates are commonly found in the breast after formation of a tumor. Since free Ca2+ plays a crucial role as a second messenger inside cells, we hypothesize that these chelated precipitates may be a result of dysregulated Ca2+ secretion associated with tumorigenesis. Transient and sustained elevations of intracellular Ca2+ regulate cell proliferation, apoptosis and cell migration, and offer numerous therapeutic possibilities in controlling tumor growth and metastasis. During lactation, a developmentally determined program of gene expression controls the massive transcellular mobilization of Ca2+from the blood into milk by the coordinated action of calcium transporters, including pumps, channels, sensors and buffers, in a functional module that we term CALTRANS. Here we assess the evidence implicating genes that regulate free and buffered Ca2+in normal breast epithelium and cancer cells and discuss mechanisms that are likely to contribute to the pathological characteristics of breast cancer.
KW - Breast cancer
KW - Lactation
KW - Mammary epithelium
KW - SPCA2
KW - Secretory pathway
UR - http://www.scopus.com/inward/record.url?scp=84896077583&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84896077583&partnerID=8YFLogxK
U2 - 10.1152/ajpcell.00330.2013
DO - 10.1152/ajpcell.00330.2013
M3 - Review article
C2 - 24225884
AN - SCOPUS:84896077583
SN - 0363-6143
VL - 306
SP - C515-C526
JO - American Journal of Physiology - Cell Physiology
JF - American Journal of Physiology - Cell Physiology
IS - 6
ER -