TY - JOUR
T1 - Cell-type independent MYC target genes reveal a primordial signature involved in biomass accumulation
AU - Ji, Hongkai
AU - Wu, George
AU - Zhan, Xiangcan
AU - Nolan, Alexandra
AU - Koh, Cheryl
AU - de Marzo, Angelo
AU - Doan, Hoang Mai
AU - Fan, Jinshui
AU - Cheadle, Chris
AU - Fallahi, Mohammad
AU - Cleveland, John L.
AU - Dang, Chi V.
AU - Zeller, Karen
PY - 2011
Y1 - 2011
N2 - The functions of key oncogenic transcription factors independent of context have not been fully delineated despite our richer understanding of the genetic alterations in human cancers. The MYC oncogene, which produces the Myc transcription factor, is frequently altered in human cancer and is a major regulatory hub for many cancers. In this regard, we sought to unravel the primordial signature of Myc function by using high-throughput genomic approaches to identify the cell-type independent core Myc target gene signature. Using a model of human B lymphoma cells bearing inducible MYC, we identified a stringent set of direct Myc target genes via chromatin immunoprecipitation (ChIP), global nuclear run-on assay, and changes in mRNA levels. We also identified direct Myc targets in human embryonic stem cells (ESCs). We further document that a Myc core signature (MCS) set of target genes is shared in mouse and human ESCs as well as in four other human cancer cell types. Remarkably, the expression of the MCS correlates with MYC expression in a cell-type independent manner across 8,129 microarray samples, which include 312 cell and tissue types. Furthermore, the expression of the MCS is elevated in vivo in Eμ-Myc transgenic murine lymphoma cells as compared with premalignant or normal B lymphocytes. Expression of the MCS in human B cell lymphomas, acute leukemia, lung cancers or Ewing sarcomas has the highest correlation with MYC expression. Annotation of this gene signature reveals Myc's primordial function in RNA processing, ribosome biogenesis and biomass accumulation as its key roles in cancer and stem cells.
AB - The functions of key oncogenic transcription factors independent of context have not been fully delineated despite our richer understanding of the genetic alterations in human cancers. The MYC oncogene, which produces the Myc transcription factor, is frequently altered in human cancer and is a major regulatory hub for many cancers. In this regard, we sought to unravel the primordial signature of Myc function by using high-throughput genomic approaches to identify the cell-type independent core Myc target gene signature. Using a model of human B lymphoma cells bearing inducible MYC, we identified a stringent set of direct Myc target genes via chromatin immunoprecipitation (ChIP), global nuclear run-on assay, and changes in mRNA levels. We also identified direct Myc targets in human embryonic stem cells (ESCs). We further document that a Myc core signature (MCS) set of target genes is shared in mouse and human ESCs as well as in four other human cancer cell types. Remarkably, the expression of the MCS correlates with MYC expression in a cell-type independent manner across 8,129 microarray samples, which include 312 cell and tissue types. Furthermore, the expression of the MCS is elevated in vivo in Eμ-Myc transgenic murine lymphoma cells as compared with premalignant or normal B lymphocytes. Expression of the MCS in human B cell lymphomas, acute leukemia, lung cancers or Ewing sarcomas has the highest correlation with MYC expression. Annotation of this gene signature reveals Myc's primordial function in RNA processing, ribosome biogenesis and biomass accumulation as its key roles in cancer and stem cells.
UR - http://www.scopus.com/inward/record.url?scp=80054789799&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=80054789799&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0026057
DO - 10.1371/journal.pone.0026057
M3 - Article
C2 - 22039435
AN - SCOPUS:80054789799
SN - 1932-6203
VL - 6
JO - PloS one
JF - PloS one
IS - 10
M1 - e26057
ER -