Cell surface heparan sulfate mediates some adhesive responses to glycosaminoglycan binding matrices, including fibronectin

J. Laterra, J. E. Silbert, L. A. Culp

Research output: Contribution to journalArticlepeer-review

163 Scopus citations


Proteins with affinities for specific glycosaminoglycans (GAG's) were used as probes for testing the potential of cell surface GAG's to mediate cell adhesive response to extracellular matrices (ECM). Plasma fibronectin (FN) and proteins that bind hyaluronate (cartilage proteoglycan core and link proteins) or heparan sulfate (platelet factor 4 [PF4] were adsorbed to inert substrata to evaluate attachment and spreading of several 3T3 cell lines. Cells failed to attach to hyaluronate-binding substrata. The rates of attachment of PF4 were identical to those on FN; however, PF4 stimulated formation of broad convex lamellae but not tapered cell processes fibers during the spreading response. PF4-mediated responses were blocked by treating the PF4-adsorbed substratum with heparin (but not chondroitin sulfate), or alternatively the cells with Flavobacter heparinum heparinase (but not chondroitinase ABC). Heparinase treatment did no inhibit cell atachment to FN but did inhibit spreading. Cells spread on PF4 or FN contained similar Ca2+-independent cell-substratum adhesions, as revealed by EGTA-mediated retraction of their substratum-bound processes. Microtubular networks reorganized in cells on PF4 but failed to extend into the broadly spread lamellae, where fine microfilament bundles had developed. Stress fibers, common on FN, failed to develop on PF4. These experiments indicate that (a) heparan sulfate proteoglycans are critical mediators of cell adhesion and heparan sulfate-dependent adhesion via PF4 is comparable in some, but not all, ways to FN-mediated adhesion, (b) the uncharacterized and heparan sulfate-independent 'cell surface' receptor for FN permits some but not all aspects of adhesion, and (c) physiologically compatible and complete adhesion of fibroblasts requires binding of extracellular matrix FN to both the unidentified 'cell surface' receptor and heparan sulfate proteoglycans.

Original languageEnglish (US)
Pages (from-to)112-123
Number of pages12
JournalJournal of Cell Biology
Issue number1
StatePublished - 1983
Externally publishedYes

ASJC Scopus subject areas

  • Cell Biology


Dive into the research topics of 'Cell surface heparan sulfate mediates some adhesive responses to glycosaminoglycan binding matrices, including fibronectin'. Together they form a unique fingerprint.

Cite this