TY - JOUR
T1 - Cardiovascular fitness after stroke
T2 - Role of muscle mass and gait deficit severity
AU - Ryan, Alice S.
AU - Dobrovolny, C. Lynne
AU - Silver, Kenneth H.
AU - Smith, Gerald V.
AU - Macko, Richard F.
N1 - Funding Information:
Supported by funds from NIH/NIA-KO1-AG00747 (to A.S.R.); a Veterans Health Administration Career Development Award (to R.F.M.); NIH/NIA R29 AG/NS 14487-01 (to R.F.M.); a Claude D. Pepper Older Americans Independence Center (OAIC)-NIH/NIA-P60-AG12583; Geriatrics Research, Education and Clinical Center (GRECC) Baltimore VAMC and the Department of Veteran Affairs.
PY - 2000/7
Y1 - 2000/7
N2 - Functional disability after hemiparetic stroke may be compounded by physical deconditioning and muscular wasting, factors related to disuse and advancing age. However, the role of body composition, severity, and chronicity of gait deficits as determinants of exercise fitness after stroke is unknown. The purpose of this study was to determine whether oxygen consumption during peak exercise (VO2 peak) is associated with body composition, the severity, or duration of gait deficits in chronic (> 6 months) hemiparetic stroke patients. Twenty-six patients (22 men, 4 women), aged 66 ± 9 years (mean ± standard deviation [SD]), completed a progressive graded treadmill test until fatigue to measure VO2 peak (1.3 ± 0.4 L/minute). Timed 30-foot walks were used to determine self-selected floor walking velocity (0.63 ± 0.31 m/s), an index of gait deficit severity. Percent body fat (30.4% ± 10.6%), total lean mass (52.0 ± 9.3 kg), lean mass of the paretic and nonaffected legs (17.2 ± 3.7 kg), and lean mass of the paretic and nonaffected thighs (13.2 ± 2.7 kg) were determined by dual- energy x-ray absorptiometry. Total lean mass (r = 0.60), lean mass of both legs (r = 0.58), paretic leg lean mass (r = 0.55), lean mass of both thighs (r = 0.64), and self-selected floor walking velocity (r = 0.53, all P < .01) correlated with VO2 peak. In contrast, percent body fat and latency since index stroke were unrelated to VO2 peak. In a stepwise regression analysis, lean mass of both thighs (r = 0.64, P < .001) and self-selected walking velocity (cumulative r = 0.78, P < .001) were independent predictors of VO2 peak and explained 61% of the variance. These results suggest that hemiparetic stroke patients are profoundly deconditioned, regardless of the latency since stroke, and that lower lean thigh mass and greater gait deficit severity predict even poorer peak exercise capacity.
AB - Functional disability after hemiparetic stroke may be compounded by physical deconditioning and muscular wasting, factors related to disuse and advancing age. However, the role of body composition, severity, and chronicity of gait deficits as determinants of exercise fitness after stroke is unknown. The purpose of this study was to determine whether oxygen consumption during peak exercise (VO2 peak) is associated with body composition, the severity, or duration of gait deficits in chronic (> 6 months) hemiparetic stroke patients. Twenty-six patients (22 men, 4 women), aged 66 ± 9 years (mean ± standard deviation [SD]), completed a progressive graded treadmill test until fatigue to measure VO2 peak (1.3 ± 0.4 L/minute). Timed 30-foot walks were used to determine self-selected floor walking velocity (0.63 ± 0.31 m/s), an index of gait deficit severity. Percent body fat (30.4% ± 10.6%), total lean mass (52.0 ± 9.3 kg), lean mass of the paretic and nonaffected legs (17.2 ± 3.7 kg), and lean mass of the paretic and nonaffected thighs (13.2 ± 2.7 kg) were determined by dual- energy x-ray absorptiometry. Total lean mass (r = 0.60), lean mass of both legs (r = 0.58), paretic leg lean mass (r = 0.55), lean mass of both thighs (r = 0.64), and self-selected floor walking velocity (r = 0.53, all P < .01) correlated with VO2 peak. In contrast, percent body fat and latency since index stroke were unrelated to VO2 peak. In a stepwise regression analysis, lean mass of both thighs (r = 0.64, P < .001) and self-selected walking velocity (cumulative r = 0.78, P < .001) were independent predictors of VO2 peak and explained 61% of the variance. These results suggest that hemiparetic stroke patients are profoundly deconditioned, regardless of the latency since stroke, and that lower lean thigh mass and greater gait deficit severity predict even poorer peak exercise capacity.
KW - Aging
KW - Body composition
KW - Cerebrovascular disease
KW - Exercise
KW - Hemiplegia
UR - http://www.scopus.com/inward/record.url?scp=0034235032&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0034235032&partnerID=8YFLogxK
U2 - 10.1053/jscd.2000.7237
DO - 10.1053/jscd.2000.7237
M3 - Article
C2 - 24192026
AN - SCOPUS:0034235032
SN - 1052-3057
VL - 9
SP - 185
EP - 191
JO - Journal of Stroke and Cerebrovascular Diseases
JF - Journal of Stroke and Cerebrovascular Diseases
IS - 4
ER -