Cardiopulmonary bypass and the blood-brain barrier: An experimental study

A. M. Gillinov, E. A. Davis, W. E. Curtis, C. L. Schleien, R. C. Koehler, T. J. Gardner, R. J. Traystman, D. E. Cameron

Research output: Contribution to journalArticlepeer-review

35 Scopus citations


The diffuse inflammation produced by cardiopulmonary bypass might disrupt the blood-brain barrier and lead to the transient neurologic dysfunction occasionally seen after cardiac operations. To evaluate this possibility, blood-brain barrier integrity was measured by carbon 14-aminoisobutyric acid tracer technique after 2 hours of cardiopulmonary bypass in piglets. Six animals were cooled to 28° C on cardiopulmonary bypass and then rewarmed to 38° C before carbon 14-aminosisobutyric acid was injected intraarterially. A control group of six animals underwent median sternotomy and heparinization but were not placed on cardiopulmonary bypass. Blood-to-brain transfer coefficients for carbon 14-aminosisobutyric acid were calculated for multiple brain regions; higher coefficients reflect greater flux of carbon 14- aminosisobutyric acid and suggest loss of blood-brain barrier integrity. The brain regions examined and their transfer coefficients (cardiopulmonary bypass versus control mean ± standard error of the mean ml/gm/min) were middle cerebral artery territory cortex (0.0032 ± 0.0002 versus 0.0030 ± 0.0002; p = 0.42), diencephalon (0.0031 ± 0.0003 versus 0.0029 ± 0.0002; p = 0.50), midbrain (0.0028 ± 0.0002 versus 0.0027 ± 0.0002; p = 0.86), cerebellum (0.0036 ± 0.0003 versus 0.0029 ± 0.0002; p = 0.22), and spinal cord (0.0035 ± 0.0003 versus 0.0041 ± 0.0008; p = 0.48). There were no significant differences in transfer coefficients between animals placed on cardiopulmonary bypass and control animals in any brain region examined. The pituitary gland lacks a blood-brain barrier and had a correspondingly high coefficient in control animals and those undergoing cardiopulmonary bypass (0.077 ± 0.012 versus 0.048 ± 0.008; p = 0.07). Two hours of moderately hypothermic cardiopulmonary bypass does not disrupt the blood-brain barrier.

Original languageEnglish (US)
Pages (from-to)1110-1115
Number of pages6
JournalJournal of Thoracic and Cardiovascular Surgery
Issue number4
StatePublished - 1992

ASJC Scopus subject areas

  • Surgery
  • Pulmonary and Respiratory Medicine
  • Cardiology and Cardiovascular Medicine


Dive into the research topics of 'Cardiopulmonary bypass and the blood-brain barrier: An experimental study'. Together they form a unique fingerprint.

Cite this