TY - JOUR
T1 - Cardiac resynchronization therapy restores sympathovagal balance in the failing heart by differential remodeling of cholinergic signaling
AU - DeMazumder, Deeptankar
AU - Kass, David A.
AU - O'Rourke, Brian
AU - Tomaselli, Gordon F.
N1 - Publisher Copyright:
© 2015 American Heart Association, Inc.
PY - 2015/5/8
Y1 - 2015/5/8
N2 - Rationale: Cardiac resynchronization therapy (CRT) is the only heart failure (HF) therapy documented to improve left ventricular function and reduce mortality. The underlying mechanisms are incompletely understood. Although β-adrenergic signaling has been studied extensively, the effect of CRT on cholinergic signaling is unexplored. Objective: We hypothesized that remodeling of cholinergic signaling plays an important role in the aberrant calcium signaling and depressed contractile and β-adrenergic responsiveness in dyssynchronous HF that are restored by CRT. Methods and Results: Canine tachypaced dyssynchronous HF and CRT models were generated to interrogate responses specific to dyssynchronous versus resynchronized ventricular contraction during hemodynamic decompensation. Echocardiographic, electrocardiographic, and invasive hemodynamic data were collected from normal controls, dyssynchronous HF and CRT models. Left ventricular tissue was used for biochemical analyses and functional measurements (calcium transient, sarcomere shortening) from isolated myocytes (n=42-104 myocytes per model; 6-9 hearts per model). Human left ventricular myocardium was obtained for biochemical analyses from explanted failing (n=18) and nonfailing (n=7) hearts. The M2 subtype of muscarinic acetylcholine receptors was upregulated in human and canine HF compared with nonfailing controls. CRT attenuated the increased M2 subtype of muscarinic acetylcholine receptor expression and Gαi coupling and enhanced M3 subtype of muscarinic acetylcholine receptor expression in association with enhanced calcium cycling, sarcomere shortening, and β-adrenergic responsiveness. Despite model-dependent remodeling, cholinergic stimulation completely abolished isoproterenol-induced triggered activity in both dyssynchronous HF and CRT myocytes. Conclusions: Remodeling of cholinergic signaling is a critical pathological component of human and canine HF. Differential remodeling of cholinergic signaling represents a novel mechanism for enhancing sympathovagal balance with CRT and may identify new targets for treatment of systolic HF.
AB - Rationale: Cardiac resynchronization therapy (CRT) is the only heart failure (HF) therapy documented to improve left ventricular function and reduce mortality. The underlying mechanisms are incompletely understood. Although β-adrenergic signaling has been studied extensively, the effect of CRT on cholinergic signaling is unexplored. Objective: We hypothesized that remodeling of cholinergic signaling plays an important role in the aberrant calcium signaling and depressed contractile and β-adrenergic responsiveness in dyssynchronous HF that are restored by CRT. Methods and Results: Canine tachypaced dyssynchronous HF and CRT models were generated to interrogate responses specific to dyssynchronous versus resynchronized ventricular contraction during hemodynamic decompensation. Echocardiographic, electrocardiographic, and invasive hemodynamic data were collected from normal controls, dyssynchronous HF and CRT models. Left ventricular tissue was used for biochemical analyses and functional measurements (calcium transient, sarcomere shortening) from isolated myocytes (n=42-104 myocytes per model; 6-9 hearts per model). Human left ventricular myocardium was obtained for biochemical analyses from explanted failing (n=18) and nonfailing (n=7) hearts. The M2 subtype of muscarinic acetylcholine receptors was upregulated in human and canine HF compared with nonfailing controls. CRT attenuated the increased M2 subtype of muscarinic acetylcholine receptor expression and Gαi coupling and enhanced M3 subtype of muscarinic acetylcholine receptor expression in association with enhanced calcium cycling, sarcomere shortening, and β-adrenergic responsiveness. Despite model-dependent remodeling, cholinergic stimulation completely abolished isoproterenol-induced triggered activity in both dyssynchronous HF and CRT myocytes. Conclusions: Remodeling of cholinergic signaling is a critical pathological component of human and canine HF. Differential remodeling of cholinergic signaling represents a novel mechanism for enhancing sympathovagal balance with CRT and may identify new targets for treatment of systolic HF.
KW - Acetylcholine
KW - Autonomic nervous system
KW - Cardiac resynchronization therapy
KW - Heart failure
KW - Receptors, muscarinic
KW - Vagal nerve stimulation
UR - http://www.scopus.com/inward/record.url?scp=84942879017&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84942879017&partnerID=8YFLogxK
U2 - 10.1161/CIRCRESAHA.116.305268
DO - 10.1161/CIRCRESAHA.116.305268
M3 - Article
C2 - 25733594
AN - SCOPUS:84942879017
SN - 0009-7330
VL - 116
SP - 1691
EP - 1699
JO - Circulation research
JF - Circulation research
IS - 10
ER -