TY - JOUR
T1 - C-MYC generates repair errors via increased transcription of alternative-NHEJ factors, LIG3 and PARP1, in tyrosine kinase-activated leukemias
AU - Muvarak, Nidal
AU - Kelley, Shannon
AU - Robert, Carine
AU - Baer, Maria R.
AU - Perrotti, Danilo
AU - Gambacorti-Passerini, Carlo
AU - Civin, Curt
AU - Scheibner, Kara
AU - Rassool, Feyruz V.
PY - 2015/4/1
Y1 - 2015/4/1
N2 - Leukemias expressing the constitutively activated tyrosine kinases (TK) BCR-ABL1 and FLT3/ITD activate signaling pathways that increase genomic instability through generation of reactive oxygen species (ROS), DNA double-strand breaks (DSB), and error-prone repair. The nonhomologous end-joining (NHEJ) pathway is a major pathway for DSB repair and is highly aberrant in TK-activated leukemias; an alternative form of NHEJ (ALTNHEJ) predominates, evidenced by increased expression of DNA ligase IIIa (LIG3) and PARP1, increased frequency of large genomic deletions, and repair using DNA sequence microhomologies. This study, for the first time, demonstrates that the TK target c-MYC plays a role in transcriptional activation and subsequent expression of LIG3 and PARP1 and contributes to the increased error-prone repair observed in TK-activated leukemias. c-MYC negatively regulates microRNAs miR-150 and miR-22, which demonstrate an inverse correlation with LIG3 and PARP1 expression in primary and cultured leukemia cells and chronic myelogenous leukemia human patient samples. Notably, inhibition of c-MYC and overexpression of miR-150 and-22 decreases ALT-NHEJ activity. Thus, BCR-ABL1 or FLT3/ ITD induces c-MYC expression, leading to genomic instability via augmented expression of ALT-NHEJ repair factors that generate repair errors. Implications: In the context of TK-activated leukemias, c-MYC contributes to aberrant DNA repair through downstream targets LIG3 and PARP1, which represent viable and attractive therapeutic targets. Mol Cancer Res; 13(4); 699-712.
AB - Leukemias expressing the constitutively activated tyrosine kinases (TK) BCR-ABL1 and FLT3/ITD activate signaling pathways that increase genomic instability through generation of reactive oxygen species (ROS), DNA double-strand breaks (DSB), and error-prone repair. The nonhomologous end-joining (NHEJ) pathway is a major pathway for DSB repair and is highly aberrant in TK-activated leukemias; an alternative form of NHEJ (ALTNHEJ) predominates, evidenced by increased expression of DNA ligase IIIa (LIG3) and PARP1, increased frequency of large genomic deletions, and repair using DNA sequence microhomologies. This study, for the first time, demonstrates that the TK target c-MYC plays a role in transcriptional activation and subsequent expression of LIG3 and PARP1 and contributes to the increased error-prone repair observed in TK-activated leukemias. c-MYC negatively regulates microRNAs miR-150 and miR-22, which demonstrate an inverse correlation with LIG3 and PARP1 expression in primary and cultured leukemia cells and chronic myelogenous leukemia human patient samples. Notably, inhibition of c-MYC and overexpression of miR-150 and-22 decreases ALT-NHEJ activity. Thus, BCR-ABL1 or FLT3/ ITD induces c-MYC expression, leading to genomic instability via augmented expression of ALT-NHEJ repair factors that generate repair errors. Implications: In the context of TK-activated leukemias, c-MYC contributes to aberrant DNA repair through downstream targets LIG3 and PARP1, which represent viable and attractive therapeutic targets. Mol Cancer Res; 13(4); 699-712.
UR - http://www.scopus.com/inward/record.url?scp=84928036644&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84928036644&partnerID=8YFLogxK
U2 - 10.1158/1541-7786.MCR-14-0422
DO - 10.1158/1541-7786.MCR-14-0422
M3 - Article
C2 - 25828893
AN - SCOPUS:84928036644
SN - 1541-7786
VL - 13
SP - 699
EP - 712
JO - Molecular Cancer Research
JF - Molecular Cancer Research
IS - 4
ER -