Abstract
When multiple samples are taken from the neoplastic tissues of a single patient, it is natural to compare their mutation content. This is often done by bulk genotyping of whole biopsies, but the chance that a mutation will be detected in bulk genotyping depends on its local frequency in the sample. When the underlying mutation count per cell is equal, homogenous biopsies will have more high-frequency mutations, and thus more detectable mutations, than heterogeneous ones. Using simulations, we show that bulk genotyping of data simulated under a neutral model of somatic evolution generates strong spurious evidence for non-neutrality, because the pattern of tissue growth systematically generates differences in biopsy heterogeneity. Any experiment which compares mutation content across bulk-genotyped biopsies may therefore suggest mutation rate or selection intensity variation even when these forces are absent. We discuss computational and experimental approaches for resolving this problem.
Original language | English (US) |
---|---|
Article number | e1004413 |
Journal | PLoS computational biology |
Volume | 12 |
Issue number | 4 |
DOIs | |
State | Published - Apr 2016 |
ASJC Scopus subject areas
- Ecology, Evolution, Behavior and Systematics
- Modeling and Simulation
- Ecology
- Molecular Biology
- Genetics
- Cellular and Molecular Neuroscience
- Computational Theory and Mathematics