Brain perfusion imaging using a Reconstruction-of-Difference (RoD) approach for cone-beam computed tomography

M. Mow, W. Zbijewski, A. Sisniega, J. Xu, H. Dang, J. W. Stayman, X. Wang, D. H. Foos, V. Koliatsos, N. Aygun, J. H. Siewerdsen

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Scopus citations


Purpose: To improve the timely detection and treatment of intracranial hemorrhage or ischemic stroke, recent efforts include the development of cone-beam CT (CBCT) systems for perfusion imaging and new approaches to estimate perfusion parameters despite slow rotation speeds compared to multi-detector CT (MDCT) systems. This work describes development of a brain perfusion CBCT method using a reconstruction of difference (RoD) approach to enable perfusion imaging on a newly developed CBCT head scanner prototype. Methods: A new reconstruction approach using RoD with a penalized-likelihood framework was developed to image the temporal dynamics of vascular enhancement. A digital perfusion simulation was developed to give a realistic representation of brain anatomy, artifacts, noise, scanner characteristics, and hemo-dynamic properties. This simulation includes a digital brain phantom, time-attenuation curves and noise parameters, a novel forward projection method for improved computational efficiency, and perfusion parameter calculation. Results: Our results show the feasibility of estimating perfusion parameters from a set of images reconstructed from slow scans, sparse data sets, and arc length scans as short as 60 degrees. The RoD framework significantly reduces noise and time-varying artifacts from inconsistent projections. Proper regularization and the use of overlapping reconstructed arcs can potentially further decrease bias and increase temporal resolution, respectively. Conclusions: A digital brain perfusion simulation with RoD imaging approach has been developed and supports the feasibility of using a CBCT head scanner for perfusion imaging. Future work will include testing with data acquired using a 3D-printed perfusion phantom currently and translation to preclinical and clinical studies.

Original languageEnglish (US)
Title of host publicationMedical Imaging 2017
Subtitle of host publicationPhysics of Medical Imaging
ISBN (Electronic)9781510607095
StatePublished - 2017
EventMedical Imaging 2017: Physics of Medical Imaging - Orlando, United States
Duration: Feb 13 2017Feb 16 2017


OtherMedical Imaging 2017: Physics of Medical Imaging
Country/TerritoryUnited States


  • Cone-beam CT
  • Perfusion Imaging
  • Reconstruction of Difference

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics
  • Electronic, Optical and Magnetic Materials
  • Biomaterials
  • Radiology Nuclear Medicine and imaging


Dive into the research topics of 'Brain perfusion imaging using a Reconstruction-of-Difference (RoD) approach for cone-beam computed tomography'. Together they form a unique fingerprint.

Cite this