Brain functional networks extraction based on fMRI artifact removal: Single subject and group approaches

Yuhui Du, Elena A. Allen, Hao He, Jing Sui, Vince D. Calhoun

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Scopus citations

Abstract

Independent component analysis (ICA) has been widely applied to identify brain functional networks from multiple-subject fMRI. However, the best approach to handle artifacts is not yet clear. In this work, we study and compare two ICA approaches for artifact removal using simulations and real fMRI data. The first approach, recommended by the human connectome project, performs ICA on individual data to remove artifacts, and then applies group ICA on the cleaned data from all subjects. We refer to this approach as Individual ICA artifact Removal Plus Group ICA (TRPG). A second approach, Group Information Guided ICA (GIG-ICA), performs ICA on group data, and then removes the artifact group independent components (ICs), followed by individual subject ICA using the remaining group ICs as spatial references. Experiments demonstrate that GIG-ICA is more accurate in estimation of sources and time courses, more robust to data quality and quantity, and more reliable for identifying networks than IRPG.

Original languageEnglish (US)
Title of host publication2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1026-1029
Number of pages4
ISBN (Electronic)9781424479290
DOIs
StatePublished - Nov 2 2014
Event2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014 - Chicago, United States
Duration: Aug 26 2014Aug 30 2014

Publication series

Name2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014

Other

Other2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014
Country/TerritoryUnited States
CityChicago
Period8/26/148/30/14

ASJC Scopus subject areas

  • Health Informatics
  • Computer Science Applications
  • Biomedical Engineering
  • General Medicine

Fingerprint

Dive into the research topics of 'Brain functional networks extraction based on fMRI artifact removal: Single subject and group approaches'. Together they form a unique fingerprint.

Cite this